
Improved Path-Finding Algorithm for Robot

Soccers

Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac, Irfan Günsel, and Ahmet Çağman
Applied Artificial Intelligence Research Centre, Near East University, Lefkosa, North Cyprus, Turkey

Email: {rahib.abiyev, nurullah}@neu.edu.tr

Abstract—In robot soccer game mobile robot moves in

complex, unpredictable, unknown dynamic environment. In

such environment the design of efficient path finding

algorithm that will find the path in a short time becomes

important problem. The widely used path finding methods

are potential field method, vector field histogram and A*

algorithms. In real time operations finding the optimal path

in a reasonable short time is not possible with the mentioned

methods. The RRT (Rapidly Exploring Random Tree)

algorithm finds a path in short time. But some times the

length of path may be very long. This paper is devoted to the

design of improved path finding algorithm that will find the

near optimal path in a short time. The improved iterative

RRT with path smoothing algorithm is developed and

implemented in RoboCup Small Size robots. Through

simulation it was shown that this algorithm can efficiently

find desirable and near optimal solutions in short time. 

Index Terms—path finding, navigation, iterative RRT-

smooth, robot soccer

I. INTRODUCTION

In robot navigation the basic requirements for mobile

robots is the ability to move to the goal, avoiding hazards

and obstacles. Finding the collision free, near optimal

path in a crowded environment in a short time is one of

the greatest problems of path finding. The navigation

algorithm must be able to determine whether there is a

continuous motion from one configuration to the other,

and find such a motion if one exists. The main goal of the

navigation algorithm is to guide the robot to the goal

point without colliding with the both static and dynamic

obstacles. Many efforts have been paid in the past to

develop various wheeled robot navigation algorithms.

The wheeled robot navigation algorithms include a set of

algorithms. These are path planning, path smoothing, and

obstacle avoidance algorithms.

Given a map and a goal location, the path finding is

used to determine a short route from robot’s current

coordinate location to another goal location along a set of

waypoints. Path smoothing allows optimise the given

path of robot using the local environment information. In

fact, in mobile robots operating in unstructured

environments, the a priori knowledge of the environment

is usually absent or partial. Many times, the environment

where robot moves is not static, i.e., during the robot

Manuscript received July 14, 2014; received November 30, 2014.

motion it can be faced with other robots or obstacles, and

execution is often associated with uncertainty. In most

cases the environment is characterised with uncertainty,

fast-changing dynamic areas with many moving obstacles.

For a collision free motion to the goal, the path planning

has to be associated with a local obstacle handling that

involves obstacle detection and obstacle avoidance. There

have been developed numbers of methodologies for robot

navigation using path planning and obstacle avoidance.

The most commonly used are the methods based on the

use of Artificial Potential Fields (APF) [1], Vector Field

Histogram (VFH) Technique [2], VFH+ Technique [3],

Dynamic Window Approach [4], Agoraphilic Algorithm

[5], Rule Based Methods [6], A star [7], fuzzy navigation

[8], [9] etc

The use of the above methods for path finding requires

a lot of time and the finding of this path will not complete

in reasonable time for real-time operation. The search of

the path in a dynamic environment is important. In this

paper the quick and feasible path finding problem is taken

in hand. Rapidly-exploring Random Trees (RRTs)

algorithm developed by Kuffner and LaValle can be

efficiently used for robot navigation in a dynamic

environment [10]. RRT Connect works by creating trees

starting at the start and the goal configurations. The trees

each explore space around them and also advance

towards each other through the use of a greedy heuristic.

This efficiently solves the path planning problem, even in

high dimensions it results in shorter time than the search

methods given above. But in some cases the RRTs does

not find a short feasible path, and some times the

determined path becomes very long. Few algorithms have

been developed in [11]-[16] to improve RRT. In [14], [15]

authors by increasing sample size try to optimize the path

length. The authors propose an extension to RRT

algorithm called RRT* and the rapidly-exploring random

graph (RRG) algorithm. Using results from random

geometric graph theory, these methods retain the

asymptotic computation complexity of RRTs under

certain assumptions. The algorithm does large number of

iteration in order to find optimal path, which needs more

computation time. In [16] authors proposed algorithm,

that refines the explored space by adding edges to the

current roadmap to enable finding higher quality paths.

The algorithm minimizes the number of collision checks

while still retaining the optimality guarantees.

398

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing
doi: 10.12720/joace.3.5.398-402

There are clearly a number of robust techniques for

various key sub-problems in robot navigation. However,

there is still no known technique or combination of

techniques which will result in a robust, generalised

performance. One of alternative and powerful ways of

constructing efficient navigation system is the design of

hybrid algorithm that has been proposed in the paper. In

this paper the improved efficient algorithm that iteratively

uses RRT algorithm with path smoothing procedure to

find acceptable path of robot.

II. DESIGN OF THE ROBOT

The mobile soccer robots and their navigation system
are designed, manufactured and assembled in our
research laboratory [17]. To design soccer robots we used
holonomic robots that have holonomic wheels with 3
degrees of freedom. Fig. 1 depicts the designed robot
soccer. The robot soccer has four omni-wheels with a
diameter of 61mm. Wheel orientation is dramatically
effects the robot speed and acceleration. The wheel
orientation of the robot is 33 degrees with the horizontal
axis in front wheels and 45 degrees with the horizontal
axis in rear wheels. Designing the omni-directional
wheels and determining the diameters of both the wheels
and the roller is one of the critical points. The robot
omni-wheels are connected to brushless DC motors and
controlled by brushless DC motor drivers called
Electronic Speed Controllers (ESC). The motors of the
robot soccer are rotating the wheels through gear
mechanisms. Motor drivers are driven by a
microcontroller. Each robot has a micro-controller board
that controls control circuits of all motors and a control
circuit of kicking mechanism. Microcontroller is
connected to the computer via wireless link. By changing
the speed of the individual omni-wheels we can control
direction, rotation and speed of the robot. Omni-wheels
allow movement in any direction, at any angle, without
rotating beforehand. For an omni-wheel robot to translate
at a certain angle, each motor needs to go at a certain
speed in relation to the other motors. They are able to
vary each component of their position and orientation
independently. They are able to turn on the spot, and
move in any direction regardless of orientation.

Figure 1. Omni-wheel robot

The environment where soccer robots move in is

characterised with fast changing dynamic areas with

moving dynamic obstacles. Collision free navigation of

holonomic robot in such dynamic environment is difficult

and very important. The structure of the robot soccer

control system designed in this paper is given in Fig. 2. In

the paper the omni-wheel robots are designed as soccer

robots. Computer tracks the world using high speed

overhead cameras. All objects on the field are tracked by

a standardized vision system that processes the data

provided by two cameras that are attached to a camera

bar located 4 meters above the playing surface. SSL

vision by using the cameras processes the map of the

world and obtains the coordinates of soccer robots and

balls then sends them to the computer/s. SSL-Vision uses

a standard cartesian coordinate system in meters and

radians. We accept that the centre of the soccer field is (0,

0). x is horizontal axis, y is vertical axis with headings

given in radians. All communication from the SSL-

Vision system to the clients is performed via network by

UDP Multicast. In order to track the world in real time,

the data is sent every 1/60 of a sec. Tracker module

captures this data stream off the network and converts it

into a data structure which will be used by decision

making (DM) module. DM block using this data, makes

strategic planning of soccer robots. Using the current

coordinates of soccer robots and goal, the new path for

each robot is determined. By controlling the speed of

motors the control of movement of robots are performed.

Figure 2. Structure of the designed control system of the Omni-wheel
robots

III. PATH FINDING PROCEDURE

In mobile robot navigation one of more used fast path
finding algorithm is RRT algorithm [10]. The RRT
algorithm is designed for efficiently searching nonconvex,
high-dimensional search spaces. The RRT will search for
a path from the start state to the goal state by expanding
the search tree. The key idea of RRT algorithm proceeds
by growing a single tree from the initial configuration
until one of its branches encounters the goal state.
Algorithm attempts to extend the RRT by adding a new
vertex that is biased by a randomly-selected state. Fig. 3
demonstrates RRT planning algorithm. As shown in the
algorithm, the inputs for RRT are map of the environment,
start and goal position, RRT tree and the amount it is
expanded at each step. The RRT algorithm is extremely
simple and but it is not optimal. A path will be computed
quickly but it is not guaranteed to be optimal and will
results a different path for every search. In robot
navigation the determination of shortest path in a short
time is very important. The RRT algorithm is not optimal
and contains many zig zags and unnecessary edges. In

399

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

order to deal with this problem, we extend the algorithm
with proposing two new procedures. The first one is
related to the extension of RRT. In this case we start to
run RRT algorithm from two points, the first is the source
point where robot is located, second one is the goal. In
the results of two runs select more near optimal path. The
second approach is the use of a simple path smoothing
algorithm in RRT. The propose procedures is not too time
consuming. In the paper extended RRT with quick path
smoothing described is applied to optimize the selected
path on the map. Fig. 4 depicts the fragment of the result
of application of path smoothing algorithm to path
obtained by the RRT. Given two nodes that are reachable
A and B. Assume that A is start point of the path Fig. 4.
This algorithm removes any nodes between A and B
since we can go from A to B directly without going
through all the nodes in between. A dashed line depicts
the original path that robot try to get goal position, solid
line demonstrates the optimal smoothed path. In the result
of smoothing the path is optimized.

Figure 3. RRT-Plan algorithm when pGoal=0;

Figure 4. Smoothed optimal path. Dashed line- original path, curved
line- smoothed optimal path

Using RRT algorithm and path smoothing procedure
the iterative RRT-Smooth algorithm has been designed.
At first stage using the coordinates of the robot and goal
the rectangular area with certain width is defined. The
value of width is determined according the size of search
area. The RRT algorithm is run within this rectangular
area (Fig. 5). If the path found then for this path the
smooth algorithm is run. In other case the width of
selected area is increased two times and for this area the
process is repeated. The iteration is repeated until the
acceptable path found. During the run of the RRT
algorithm, at the first stage, “chooseTarget” determines

where to explore the map by randomly selecting a point
on the map giving bias towards the goal, with probability
pGoal, that expands towards the goal minimizing the
objective function of distance (Fig. 6). Here, using
random number generator, uniformly points are generated
to choose a target. Then algorithms determine nearest
node using “nearest” procedure. If the distance between
the node and target position is less than the distance
between generated point and target position then the
generated point is selected as new node where tree will be
explored. In each iteration when the new node is selected,
the distance between this nearest point and goal position
is tested. If this distance is less than the required small
value epsilon then the tree is returned as result of RRT
algorithm. In other case tree is extended and explored.
During extension of the tree the presence of obstacles are
tested. In the case of presence of obstacles the tree is not
extended toward to that direction. In other case the
selected tree will be extended towards the chosen target
and RRT algorithm will be iterated until goal position is
reached (Fig. 6).

Figure 5. Iterative RRT-Smooth algorithm

function

RRT-Plan

(world,

start,

goal,

epsilon,

p-goal,

tree)

 target

← chooseTarget(world,

pGoal,

goal)

 nearest

← nearest(tree,

target)

 if(

distance(nearest,goal)

<

epsilon

)

 return

tree

 else

 explored

← explore(world,

nearest,

target,

epsilon)

 if

(explored

!=

nil

)

 addNode(tree,explored)

 RRT-Plan(world,

start,

goal,

epsilon,

p-goal,

tree)

function

chooseTarget(world,

pGoal,

goal)

 p

← UniformRandom

in

[0.0

..

1.0]

 if

0

<

p

<

pGoal

 return

goal;

 else

 return

randomState(world)

function

nearest(tree,target)

 point

← first(tree)

for

each

node

in

rest(tree)

 if

distance(node,

target)

<

distance(point,

target)

 point

← node

function

explore(world,

u,

v,

epsilon)

 explored

← extend(u,

v,

epsilon)

 if

checkCollision(world,

explored)

=

false

then

 return

explored

 else

 return

nil

Figure 6.

RRT planning

algorithm

400

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

After reaching goal path smoothing algorithm is

applied to the obtained RRT path. Smooth-path starts

with first node in the path, it then calls dropwhile-

walkable function which finds a node that is farthest from

the first node that can be reachable without collision (Fig.

7). The function adds this node to the path and does the

same operations for this node, this process is repeated

until there are no more nodes on the path in which case

the function returns. The use of path smoothing procedure

with RRT-Plan allows to optimize the path of the robot.

function smooth-path (isWalkable, path, curr-node, path-rest)

if(isEmpty(rest) == false)

path_rest = drop-while-walkable(fn(isWalkable,curr-

node,%),path_rest)

x = first(path-rest)

xs = rest(path-rest)

smooth-path(isWalkable addNode(path-rest,curr-node),x,xs))

else

return addNode(path_rest,curr-node)

function drop-while-walkable (pred, path, curr-node)

if(isEmpty(path) == false && pred(first(path)) == true)

drop-while-walkable(pred, rest(path), first(path))

else

return addNode(curr-node, s)

Figure 7. Path smoothing algorithm

IV. SIMULATION AND EVALUATION OF PATH FINDING

PROCEDURE

Simulations of path finding algorithms have been done.

When algorithm is run the input position of goal, start

position of robot, positions of obstacles, threshold

distance to obstacle are entered. After entering these

values the robot start to path and move towards goal. We

test different path finding algorithms in order to show the

efficiency of the proposed improved iterative RRT-

smooth algorithm. At first stage the map of the world

with obstacles is selected. The implementations of APF,

A-star, RRT-Plan, RRT-Smooth, IRRT and IRRT-

Smooth algorithms for robot navigation have been done.

The obstacles are shown with coloured circle (Fig. 8(a)

and 8(b)). Robot analysing the map of environment plans

its trajectory in real time in order to achieve the goal

position. The source and goal points are entered for the

given map. For comparative analysis of different methods

the running time of algorithm and path length are selected.

At first stage the simulations of APF and A star

algorithms are done for the given map. Then the

simulations of RRT-Plan and IRRT-Smooth algorithm

are done for given map. The algorithms are run for the

same values of Epsilon (the amount that the tree is

expanded at each iteration) and pGoal (probability goal).

After the simulation iterative RRT-Smooth algorithm is

run for the same values of parameters of Epsilon and

pGoal. In some cases the results of RRT-Smooth is the

same as IRRT-Smooth. Fig. 8 depicts the fragment from

the simulation of iterative RRT algorithm. During

simulation the values of epsilon and pGoal are selected as

50 and 0.3 respectively. Fig. 9 depicts simulation results

of different path finding algorithms. As shown from the

figure IRRT-Smooth algorithm give better result in length.

Table I demonstrates the average value for time and

length of path finding results that it takes for achieving

the goal for Fig. 9. The simulation results are averaged

for 1000 (thousand) path finds. As shown from the figure

and table 1 the IRRT-Smooth algorithm give better result

in length. The results obtained for length of IRRT-

Smooth algorithm better than other ones. The time results

is better than others excluding RRT Plan.

(a)

(b)

Figure 8. Path finding, (a) 1- A star, 2- RRT-Plan, 3- APF, 4- RRT-
Smooth, (b) 1- A star, 2- RRT-Plan, 4- APF, 3- Iterative RRT-Smooth.

TABLE I. SIMULATION RESULTS OF DIFFERENT ALGORITHMS

Methods time length

A* 22.5347799 782.5483399

APF 102.477935 732.0000

RRT Plan 8.2619800 849.9

RRT Smooth 14.870870 748.336417

Iterative RRT 8.0726300 716.428945

Iterative RRT

Smooth
12.651820 708.567281

1 2 3 4

 1 2 3 4

401

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

V. CONCLUSION

Iterative RRT-Smooth path finding algorithm is

designed for efficient navigation of soccer robots. The

RRT and Smooth algorithms are iteratively applied to the

environment in order to find near-optimal path. The

comparison of iterative RRT-Smooth algorithm with the

existing path finding algorithms has been performed

using run time and path length parameters. The run time

of A* and APF algorithms take more time than others and

in some cases they are not efficient for real time

operation where the environment changes quickly. The

RRT algorithm quickly finds a feasible solution, but does

not necessarily find the shortest path, and sometimes the

length of calculated path may be very long. RRT-Smooth

optimizes the path length of RRT plan algorithm. The

proposed iterative RRT-Smooth efficiently finds feasible

and near optimal solutions in short time and shortens the

path length considerably. The described path finding

algorithm is applied for control of the holonomic 4-

wheel-driven soccer robots which are designed and

manufactured in our research laboratory. The

experimental results demonstrate the efficiency of the

proposed algorithms in navigation of soccer robots using

iterative RRT-Smooth in dynamic environments

REFERENCES

[1] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast

mobile robots in cluttered environments,” in Proc. IEEE Int.

Conference on Robotics and Automation, vol. 1, May 1990, pp.
572–577.

[2] J. Borenstein, Y. Koren, and S. Member, “The vector field

histogram-fast obstacle avoidance for mobile robots,” IEEE
Journal of Robotics and Automation, vol. 7, pp. 278–288, 1991.

[3] I. Ulrich and J. Borenstein, “Vfh+: Reliable obstacle avoidance for
fast mobile robots,” in Proc. the IEEE Int. Conference on Robotics

and Automation, 1998.

[4] D. Fox, W. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidan-ce,” IEEE Robotics Automation

Magazine, vol. 4, 1997.
[5] L. Mc Fetridge, M. Y. Ibrahim, “A new methodology of mobile

robot navigation: The agoraphilic algorithm,” Robotics and

Computer-Integrated Manufacturing, vol. 25, no. 3, pp. 545-551,
2009.

[6] K. Fujimura, Motion Planning in Dynamic Environments.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1992.

[7] W. Y. Loong, L. Z. Long, and L. C. Hun, “A star path following

mobile robot,” in Proc. IEEE 4th Inter. Conf. on Mechatronics,
Kuala Lumpur, Malaysia, 2011.

[8] R. Abiyev, D. Ibrahim, and B. Erin, “EDUrobot: An educational
computer simulation program for navigation of mobile robots in

the presence of obstacles,” Int. Journal of Engineering Education,

vol. 26, no. 1, pp. 18–29.
[9] R. Abiyev, D. Ibrahim, and B. Erin, “Navigation of mobile robots

in the presence of obstacles,” Advanced Engineering Software, vol.
41, pp. 1179–1186, Oct. 2010.

[10] S. M. LaValle, Planning Algorithms, Cambridge, U. K.:

Cambridge University Press, 2006.
[11] R. H. Abiyev, N. Akkaya, E. Aytac, and D. Ibrahim, “Behaviour

tree based control for efficient navigation of Holonomic robots,”
Int. Journal of Robotics and Automation, Actapress, vol. 29, no. 4,

2014.

[12] D. Ferguson and A. A. Stentz, “Dynamic planning in high-
dimensional search spaces,” in Proc. the 2006 IEEE International

Conference on Robotics and Automation, 2007, pp. 1310–1315.
[13] R. Geraerts and M. H. Overmars, “Creating high-quality paths for

motion planning,” The International Journal of Robotics Research,

vol. 26, no. 8, pp. 845–863, 2007.

[14] S. Karaman and E. Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning,” in Proc. Robotics:

Science and Systems, (Zaragoza, Spain), June 2010.

[15] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M.
S. Muhammad, “RRT*-SMART: A rapid convergence

implementation of RRT*,” International Journal of Advanced
Robotic Systems, 2013.

[16] R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring

roadmaps: Weighing exploration vs. refinement in optimal motion
planning,” in Proc. IEEE Int. Conf on Robotics and Automation,

2011, pp. 3706–3712.
[17] Neuislenders robotics team. [Online]. Available:

robotics.neu.edu.tr

 Nurullah Akkaya

was born in Istanbul, on

17th September 1984. After finishing secondary

and high school degree, he started his
undergraduate degree in Computer

Science at

University of North Alabama. He graduated
from Computer Engineering at Near East

University. He has been working at Applied

Artificial Intelligence Research Centre, Near
East University. He is member of Robotics

research group of Near East University.

 Ersin Aytac

was born in Antalya, on 16th July
1984. After finishing secondary and high school

degree, he started his undergraduate degree in
Mechanical Engineering

at University of North

Alabama and then transferred to University of

Virginia. He graduated from Mechanical
Engineering at Near East University. He has

been working at Applied Artificial Intelligence
Research Centre, Near East University. He is

member of Robotics research group of Near

 East University.

Irfan Günsel

graduated

from Near East

University. He has been working at Applied

Artificial

Intelligence Research Centre. He is
member of Robotics research group of Near

East University.

 Ahmet Çağman

graduated

from Near East

University. He has been working at Applied
Artificial Intelligence Research Centre. He is

member of Robotics research group of Near

East University.

402

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

Rahib H. Abiyev graduated from the
Azerbaijan State Oil Academy with High

Honours in Electrical and Electronic

Engineering. He continued studying and
received Ph.D degree in Electrical and

Electronic Engineering. He worked research
assistant at the research laboratory “Industrial

intelligent control systems” of Computer-aided

Control System Department. From 1999-
present he is working at the department of

Computer Engineering of Near East University,
Northern Cyprus. He is director of Applied Artificial Intelligence

Research Centre. His research interests are Softcomputing, Control

Systems, Robotics, Signal Processing, Pattern Recognition.

