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Abstract—The asymptotic stabilization of a morphous one-

parameter chaotic system using Takagi Sugeno Fuzzy Con-

trollers is reported in this paper. This system is a paramet-

rically modified system realized from the generalized ca-

nonical Lorenz system and having only one variable param-

eter. The system has been proved to be topologically none-

quivalent to the classic Lorenz system but generate attrac-

tors that morph from Lorenz-like to Chen-like as the pa-

rameter is varied positively. A Fuzzy Controller designed 

via Takagi Sugeno Fuzzy models and stability analysis of 

the Lyapunov stability type is used to stabilize the system's 

trajectories in the sense of Lyapunov. Numerical simulation 

and analysis of fuzzy rules shows that the system converges 

to equilibrium points with better settling times as the pa-

rameter is varied positively. Moreover, the control effort of 

each fuzzy subsystems formed by the fuzzy rules are over 

1/10 less in comparison with stabilization of the classic Lo-

renz system via the same design principles. 

Index Terms—asymptotic stabilization, Chen's system, Lo-

renz system, lyapunov stability, takagi sugeno fuzzy model 

 

I. INTRODUCTION 

Since the discovery of chaotic dynamics in weather 

systems by Lorenz in 1963 [1] expansive interest by re-

searchers has demonstrated the presence of chaotic dy-

namics in multitude of natural and man-made systems in 

almost all sphere of life. From the inception of the sys-

tematic study of chaos by scientific community, plethora 

of literature has appeared on the steady growth in under-

standing of the phenomenon of chaos, leading to discov-

ery of more chaotic systems and in-depth studies of the 

classic Lorenz system resulting in its modification to 

various topologically nonequivalent versions that exhibits 

the salient qualitative and quantitative properties of cha-

otic systems, namely that the system must be expansive 

with at least one positive Lyapunov exponent.     

Scientific literature is filled with the discoveries of hy-

brid chaotic systems inspired from other well-known 

systems like the Chen's system [2] Lu system [3] unified 

chaotic system [4] the Sprott's family of chaotic systems 

[5] and a large body of other new attractors inspired spe-

cifically from the classic Lorenz system [6]-[11]. Perhaps, 
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it is safe to say that the Lorenz system is the most versa-

tile and well-studied chaotic system with several and 

consistently modified versions with topological none-

quivalence. In this connection, the Chen's system is wor-

thy of prominent mention as it has served to 'bridge' the 

gap between the classicality of the Lorenz system and the 

evolvability of several new hybrid chaotic systems [12]-

[15]. Some of the modified systems, although topologi-

cally nonequivalent to the canonical Lorenz systems have 

two nonlinearities and three variable parameters like the 

original Lorenz system while many others like the 

Shimizu-Morioka system [16]  Rikitake system [17]  

four-wing attractor system [18] and the eight-wing attrac-

tor [19] among others have three or more nonlinear quad-

ratic terms or adjustable parameters.   

Controllability and stabilizability of these evolved sys-

tems has attracted attention from researchers in recent 

years. Infact, existentiality (with Lyapunov exponent 

> 0, = 0, < 0
1 2 3
λ λ λ and controllability of a chaotic 

system are two properties that enhances utilizability of 

such systems in chaos-based engineering and non-

engineering systems. Consequently, different control 

methods have been used to control the dynamics of cha-

otic systems.  Impulsive control [20], linear feedback 

controller [21] adaptive fuzzy models [22] Lyapunov 

function-based fuzzy controllers [23] have been used to 

drive chaotic regimes to some equilibrium points. In 

many of the cases involving stability and stabilization, 

the Lyapunov stability criteria has played a dominant role 

in stability analysis of designed fuzzy controllers. In this 

work, attempt is made to asymptotically stabilize a mor-

phous one-parameter chaotic system whose dynamic 

analysis has been presented in [24]. As a result, this pa-

per dwell on methods of designing a fuzzy controller and 

the stability analysis methods and then presents the nu-

merical simulation results accordingly without reproduc-

ing the results in [24]. 

II. THE LORENZ AND CHEN'S SYSTEMS 

The classic Lorenz system [1] is an autonomous sys-

tem represented by a set of three coupled differential 

equations represented by: 

1 1 2
x x x     
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2 1 2 1 3

x x x x x     

                                   
3 1 2 3

x x x x                           (1) 

where 
1x , 

2x  and 
3x  are states of the system. For typi-

cal values of σ=10,ρ= 28 and      , the famous 

butterfly attractor evolves. On the other hand, the Chen's 

systems [2] is described by the following set of equations 

     
1 1 2

x = -ax + ax  

                     = + -
2 1 2 1 3

x (c - a)x cx x x  

                                = -β
3 1 2 3

x x x x                        (2) 

which has a set of chaotic parameters 

= 35, = 3, = 28a b c . The Chen's system is a dual of the 

Lorenz system but evolves more sophisticated attractors. 

In the framework of topological classifications given by 

Vanecek and Celikovsky[25] the linearization of a chaot-

ic system about the origin produces a 3?   constant ma-

trix of partial derivatives, A = aij 3?
 
 

 in which the 

sign of the elemental combination  
12 21

a a  distinguishes 

topological nonequivalences. Based on this criterion, the 

Lorenz system satisfies the condition > 0
12 21

a a , while 

the Chen's system: 
12 21

a a < 0 . 

III. THE MORPHOUS ONE-PARAMETER CHAOTIC 

SYSTEM 

The morphous one-parameter chaotic system [24] has 

an algebraically simple mathematical representation, but 

nonetheless produces highly complex chaotic attractors 

that morph from the Lorenz-like system to the Chen's 

system as a variable parameter  increases positively. 

The equations governing the system is given by  

   
1 1 2

x = -x - x     

                  = - + -
2 1 2 1 3

x x rx x x  

                                 = -0.1 +
3 3 1 2

x x x x                   (3) 

where r is the variable parameter. When -1 < < 1.1r , the 

system has three equillibria at  

1+ 1+
(0, 0, 0), , - , -1- ,

0 1
10 10

1+ 1+
- , , -1-

2
10 10

r r
S S r

r r
S r

 
 
 

 
 
 

 

[24]. Other dynamic properties of the system in (3) as it 

morphs for four cases of [0.05,1]r  were also investi-

gated in [24].  

IV. TAKAGI SUGENO FUZZY MODELLING AND 

CONTROL 

Since its inception in [26] the TS fuzzy models have 

played a dominant role in the modeling of complex non-

linear systems that are deficient of exact descriptions and 

have mathematically intractable dynamics. The TS fuzzy 

model has fuzzy sets in its antecedent part and a linear 

function of the input-output variables or singleton in the 

consequent part. A simple form of the TS fuzzy model is 

given as follows: 

IF x  is 
1M THEN y = Ax+ B                   (4) 

where x  is the input variable, 
1M  is a linguistic varia-

ble, y is the output, A and B are constants.  

A. Design of the Takagi-Sugeno (T-S) Fuzzy Controllers 

Given an autonomous nonlinear dynamic system com-

prising a plant and a Fuzzy Controller described by  

    
0 0

x = f(x)+b(x)u,x(t )= x                            (5) 

where [ ]
1 2

T
x = x ,x ,...xn is a state vector, 

( ) [ ( ), ( )... ( )]
1 2

T
f x f x f x f xn and ( ) [ ( ) ( ) ( )]

1 2 3
T

b x = b x ,b x ...b x
 

are function vectors describing the dynamics of the plant, 

u is a control signal generated by the FLC. The FLC con-

sists of p  rules. The overall control signal applying to 

the plant is a function of iu  and i  [23] where iu  is the 

control signal generated by each fuzzy subsystem formed 

by the fuzzy rules. The i-th fuzzy rule of the Fuzzy Con-

troller is of the following form: 

 Rule   :  IF 
1

x  is 
1

X
i

 AND  is  
2

x is 
2

X
i

 AND ...    

 AND  xn  is Xin  

 THEN  ( )u = u xi                                        (6) 

where  
1

X
i

, 
2

X
i

... Xin  are input fuzzy labels, and  

( )u = u xi is the control output.   Moreover, each fuzzy 

rule therefore generates a degree of fulfillment  giv-

en by:  

                         ξ = min(ξ , ξ ...ξ )n1 2i ii i
                      (7) 

                        [0,1], 1, 2, ...i pi      

Definition [27]  A fuzzy subsystem associated with 

fuzzy rule i  is a system with a plant of (5) controlled by 

only iu , which is the output of fuzzy rule i  in the form 

of (6). By using the singleton fuzzifier in conjunction 

with min-max inference and the weighted sum defuzzifi-

cation method, the overall Fuzzy Controller output con-

trol signal is given by [27] 

                          

ξ ( ) ( )
=1=

ξ ( )
=1

p
x u xi i

iU p
xi

i





                          (8) 
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The control objective is to drive the trajectories of the 

system from their chaotic regimes to some stable points 

in the sense of Lyapunov. 

B. Stabilization Controller Synthesis 

The Lyapunov stability criterion [30][31]was em-

ployed to analyze the local stability of each fuzzy rule 

and prove the global asymptotic stability of the Control-

ler using the approach outlined in [23][27] and proved in 

[28]. 

Theorem [29] Let 0x   be an equilibrium point of the 

system in eq (4) and 
n

D R  be a domain containing 

0x  . Let V : D R  be a continuously differentiable 

function such that  

     (0) = 0V  and  ( ) > 0V x  in  - 0D        (9) 

                    ( ) 0V x     in  - 0D                         (10) 

Then 0x    is stable. Moreover, if                 

                 ( ) < 0V x    in   - 0D                           (11) 

Then 0x    is asymptotically stable. 

The positive definite function ( )V x  satisfying  (9) and 

(10) is called Lyapunov function candidate whose exist-

ence is a sufficient condition for stability. The Lyapunov 

function [28] was chosen: 

           
1 2 2 2

( , , ) = ( + + )
1 2 3 1 2 3

2

j
V x x x x x x          (12) 

= 1, 2... = 9j p, p  

The partial derivative of (12) yields: 

( , , ) = + +
1 2 3 1 1 2 2 3 3

j
V x x x x x x x x x                    (13) 

Customarily, a control input term u is added to  (3) and 

transformed into the following: 

           
1 1 2

x = -x - x +u  

                 = - + -
2 1 2 1 3

x x rx x x  

                                     -0.1
3 1 2

x = x + x x
3

                 (14) 

Inserting  (14) into (13) and factorizing yields 

2 2
( , , ) = - - 2 + +

1 2 3 1 1 2 2

2
- - 0.1

1 1 3 3

j
V x x x x x x rx

                           x u x x x

        (15) 

Assuming = 0
3

x  ;   

2 2
( , , ) = - - 2 + +

1 2 3 1 1 2 2 1
j

V x x x x x x rx x u           (16) 

The stability analysis algorithm requires the transfor-

mation of  (15) into a form in (5) and then solving for u.  

2 2
- - 2 + + 0

1 1 2 2 1
x x x rx x u =     

2 2
- - 2 + = -     

1 1 2 2 1
x x x rx x u  

                     
2

2= + 2 -
1 2 1

rx
u x x

x
                       (17) 

After manipulating (17), the control signal is derived 

as  

                      
2

2= + 2 -
1 2 1

rx
u x x

x
                 (18) 

The relationship (18) is the computational relationship 

for the derivative of control input for each of the subsys-

tems formed by the Fuzzy rules. Setting =u ui , for 

= 1, 2...i p , and beginning with = 0.06r , each fuzzy 

rule was analyzed for local stability. Solving for u and 

inserting each control output value =u ui  in (15) proves 

the local stability of each fuzzy subsystem formed by 

each fuzzy rule. The partial derivative in (13) and the 

global asymptotic stability of the system in the sense of 

Lyapunov. Moreover, the aggregated fuzzy controller 

output signal applied to the chaotic was uniquely small. 

The fuzzy control scheme, membership function and the 

rule base are given in Fig. 1 and Fig. 2 and Table I re-

spectively. 

Output

Output

1

summing 

junction
Takagi Sugeno 

Fuzzy Logic 

Controller

Chaotic System

In Out

Reference input

1

 
Figure 1. Fuzzy logic control scheme 
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Figure 2. Triangular membership function for ,1 2x x ; 

[-100,100]; [-80, 80];1 2 3x x x    

Journal of Automation and Control Engineering Vol. 2, No. 1, March 2014

3©2014 Engineering and Technology Publishing



TABLE I:  FUZZY CONTROLLER RULE BASE 

Rule Antecedent Consequent 

1x  2x  ui  

1 P P u1 

2 N N u2 

3 P N u3 

4 N P u4 

5 P Z u5 

6 N Z u6 

7 Z P u7 

8 Z N u8 

9 Z Z u9 

V. DISCUSSION 

Various values of r were simulated for fixed initial 

conditions. It was observed that the chaotic system is 

highly sensitive to changes in initial conditions than the 

classic Lorenz system. Specifically, as the value of 

[0.05,1]r  increases for an initial condition, the trajec-

tories stabilizes faster with less settling time. It was also 

observed that as the value of r exceeds unity, i.e. = 1.5r , 

the phase portrait of the system in the x-y plane is torus-

like and is also stabilizable with the designed Fuzzy Con-

troller. The partial derivative of the Lyapunov function 

candidate was negative semi-definite for all fuzzy sub-

systems, ( , , ) 01 2 3
j

V x x x  for all = 1, 2... = 9j p, p , con-

sequently, the closed loop system is globally asymptoti-

cally stable in the sense of Lyapunov. The simulation 

results show that the method of designing the Fuzzy Con-

troller is effective and efficient as it can robustly stabilize 

the systems from several initial conditions and different 

values of r. 

VI. SIMULATION RESULTS 

A. Open Loop Simulations 

The open loop system was simulated using MATLAB 

software for two values of = 0.06r  and = 0.6r  for the 

same initial conditions [ (0), (0), (0)] = [10, 60, 50]1 2 3x x x . 

The results are given in the following Figures. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

x1

x
2

x2 vs x1  (r=0.06)

 
(a) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

x1

x
3

x3 vs x1  (r= 0.06)

 
(b) 
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(f) 

Figure 3.  Phase portraits of the  one-parameter chaotic system as it morphs from (i) = 0.06r  - (a) -2 1x x  (b) -3 1x x  (c) -3 2x x planes to 

= 0.6r  - (d) -2 1x x   (e)  -3 1x x  (f) -3 2x x planes 
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Figure 4: Evolution of system's state trajectories  as  it morphs from (i) Lorenz-like system (a) 

(a) = 0.06; (b); = 0.1; (c); = 0.33; (d); = 0.7(e); = 0.74(f); = 1.0r r r r r r  vs times(s) (b) 2x  vs time (s) (c) 3x  vs time (s) to (ii) Chen-like sys-

tem  (d) 1x  vs times(s) (e) 2x  vs time (s) (f) 3x  vs time (s) 

The evolution of the open loop system's trajectories as 

it morphs from Lorenz-like to Chen's system are given in 

the following Figures. 

B. Closed Loop Simulation 

The Closed loop system was simulated using 

MATLAB software for six values of 

= 0.06,0.1,0.33,0.7,0.74,1.0r FOR the same initial con-

ditions [ (0), (0), (0)] = [10, 60, 50]1 2 3x x x . The results are given 

in the following Figures: 
 

(a) 
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Figure 5.  Stabilized system's state trajectories for various values of 

(a) = 0.06; (b); = 0.1; (c); = 0.33; (d); = 0.7(e); = 0.74(f); = 1.0r r r r r r  

VII. CONCLUSION 

This paper reported the stabilization of a morphous 

one-parameter chaotic system which is topologically 

nonequivalent to the Lorenz and Chen's system but nev-

ertheless morphs from Lorenz-like system to the Chen's 

system as the parameter r is increased between 0.05 and 

1.0.  The Fuzzy Controller asymptotically stabilizes the 

highly aperiodic trajectories of all the fuzzy subsystems 

in the sense of Lyapunov, with a uniquely small control 

effort. 
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