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Abstract—This paper provides an illumination robust direct 

monocular simultaneous localization and mapping (SLAM) 

method, which takes advantage of the RGB channel to 

enhance the lighting change invariance of the input frame 

series. By linearly combining the RGB channel, some 

illumination-insensitive components in the colour space are 

extracted and represented by three indicators in this paper. 

An optimization model is then provided to minimize the 

errors in these indicators using a Kalman filter (KF). These 

indicators serve to update the frames by keeping only the 

illumination-insensitive components. The illumination 

robust visual SLAM method based on these enhanced 

frames is thereby offered. In addition, the gradient 

magnitude is utilized to improve the distinctiveness of each 

pixel in the frame. Experiments on both artificial and 

natural datasets show that the provided method has a better 

illumination robustness than the state-of-the-art direct 

SLAM method.  

 

Index Terms—visual SLAM, illumination robustness, colour 

constancy 

 

I. INTRODUCTION 

In the past few years, the visual SLAM method has 
attracted the attention of many researchers and has been 
used in many applications such as self-driven car, 
quadcopter control and 3D reconstruction. The state-of-
the-art visual SLAM/odometry methods such as the LSD-
SLAM [1], ORB_SLAM [2] and DSO[3] methods 
achieve high precision in both pose tracking and scene 
reconstruction. However, performance degradation 
occurs, especially in the direct SLAM method, when the 
lighting changes rapidly. The reason is that the frame-to-
frame matching accuracy is significantly affected by the 
illumination conditions. Thereby, the challenging 
problem of improving the illumination robustness is 
raised, and the related experiments are necessary and 
crucial in terms of extending the application range of 
SLAM methods. 

This paper provides an approach to reduce changes in 
the input frame series caused by changes in lighting 
intensity and to, thereby, improve the illumination 
robustness of the SLAM method. To perform the 
reduction, we extract the illumination-insensitive 
components from every frame, which retain similar 
values under changing lighting conditions. The frames 
are subsequently adjusted by replacing the original 
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intensities with these components to resist lighting 
changes. Running on the enhanced frame series, the 
proposed SLAM method has an improved illumination 
robustness. 

We make use of the RGB colour channels to extract 

the illumination-insensitive components. Studies of 

colour channel analysis show that some illumination 

irrelevant information hides in the different intensities of 

different colour channels. First, we follow and extend 

Maddern et al.’s work[4], which shows that the intensity 

of each colour channel is represented by a polynomial of 

illumination-relevant terms and illumination-irrelevant 

terms, to extract the illumination-insensitive components 

by linearly combining the red, green and blue channels. 

Furthermore, we perform a statistical study on the 

Amsterdam Library of Object Images (ALOI)[5] and find 

that the darkest one among the RGB channels has a 

robustness to light source temperature changes. Keeping 

the darkest channel is an effective approach to reduce the 

error caused by light temperature. Based on the above 

knowledge, three indicators that have superior 

performance under different illumination conditions are 

generated in this paper. 

For the purpose of merging these three indicators 
together to get a better estimate of the illumination-
insensitive components, we assign a weight to each 
indicator and utilize an optimization model to calculate 
the weights based on the illumination conditions. A 
colour-balance-based method is used to partly estimate 
the weights, and a KF method is then employed to 
dynamically adjust the weights during the robot 
movement. After the optimization is performed, the 
gradient magnitude is then applied on every pixel to 
improve their distinctiveness. 

Several experiments are performed on the New 

Tsukuba Stereo Dataset (NTSD)[6] and the UR-10-based 

natural scenes dataset to compare our method to the LSD-

SLAM method[1] in terms of the tracking accuracy and 

3D-point-reconstruction performance. The results show 

that the provided method has a better illumination 

robustness. 

The main contributions and innovations of this paper 

are as follows. 

1. Taking advantages of the RGB colour channels, 

multiple illumination-insensitive indicators are 

provided. In contrast to the single indicator 

method, our method provides a better illumination 

robustness. 
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2. Utilizing an optimization model of merging the 

above indicators, better estimates of the 

illumination-insensitive components are calculated 

and dynamically adjusted with lighting changes. 

3. The use of gradient magnitude improves the 

distinctiveness of every pixel. 

The remainder of this paper is organized as follows. 

Section II discusses related work. The derivation and 

definition of the three indicators are considered in III-A. 

The optimization model is described in III-B. The 

gradient magnitude is shown in III-C. Section IV presents 

the experimental results, and section V is the conclusion. 

II. RELATED WORK 

A. Visual SLAM 

The visual SLAM method utilizes only a camera to 

gain the depth information of objects and then completes 

the localization and mapping task. Based on the different 

image matching methods, the visual SLAM methods are 

classified into two groups: the direct method, which finds 

corresponding points by directly comparing intensity 

values, and the feature-based method, which extracts the 

feature points first and then finds corresponding points 

among these feature points. In general, the feature-based 

methods, such as the ORB-SLAM [2] and ORB-SLAM2 

[7] methods, have a better illumination robustness than 

direct methods because the feature extraction intrinsically 

filters out some illumination-sensitive components. 

However, direct methods such as the LSD-SLAM [1] 

method provide more detailed reconstruction models by 

taking into account the whole image rather than only a 

small selection of feature points. Some studies have 

improved the illumination robustness of the direct SLAM 

methods. The NID-SLAM [8] method utilizes the global 

intensity distribution to reduce local intensity changes 

and, thereby, obtain illumination robustness. However, 

the iterative histogram computation results in a low 

operation rate. The DSO [3] method provides a 

photometric calibration method to resist lighting changes, 

but this calibration inevitably needs extra work. 

Therefore, we focus on the imaging method that directly 

obtains illumination-irrelevant intensities to improve the 

illumination robustness. 

B. Illumination Robust Imaging  

Some methods balance accuracy and computational 

complexity by taking advantage of the scene structure. 

Son et al.’s work [9] proposes a high-speed method that 

utilizes the vanishing point and the region of interest to 

estimate the possible lighting changes in the scene. Simo-

Serra et al.’s work [10] takes advantage of the heat fusion 

map to embed the image as a physical shape, which 

thereby resists illumination changes by taking into 

account position information. Kim et al.’s work [11] 

provides an image matching method that utilizes the 

Mahalanobis distance cross-correlation, which is 

illumination invariant, to measure the similarity between 

two images. These methods perform well, but their 

application range is limited because they require specific 

input data. 

 

Figure 1.  A demonstration of the imaging process. 

Some other methods utilize extra devices to achieve 

illumination robustness. Hu et al.’s work [12] reduces the 

intensity changes caused by lighting by using Lidar data 

as the reference. Maddern et al.’s work [13] provides a 

method to resist day/night lighting changes by computing 

the prior 3D structure and then inferring the illumination 

invariant area based on structural knowledge. These 

methods have a high performance under challenging 

illumination conditions, but they require expensive 

equipment to obtain the extra data. 

A new path to solve this problem is to build an 

imaging model and exclude the illumination-relevant 

components. Ratnasingam and Collins [14] discuss an 

imaging model using different wavelengths of light to 

calculate the illumination-insensitive components. Then, 

Maddern[4] fixes the wavelength to specific values so 

that an RGB camera could be used to obtain the data.  

III. DIRECT MONOCULAR SLAM WITH 

ILLUMINATION-INSENSITIVE COMPONENTS 

In this section, we describe the details of our 

illumination robust SLAM method, especially the 

derivation and definition of the illumination-insensitive 

indicators, the optimization model and the gradient 

magnitude approach. We adopt the framework of [1] to 

describe the frames and the map. 

A. Illumination-insensitive Indicators 

The direct SLAM method usually estimates the relative 

pose by minimizing the photometric error. Given an 

image 𝑰: 𝛀 → ℝ+  and the depth map 𝑫: 𝛀 → ℝ+ , every 

pixel 𝒑𝒊 ∈ 𝛀  is transformed, with the associated depth 

information 𝑫𝒓(𝒑𝒊), to its corresponding point 𝑞𝑖  on the 

new frame by the camera pose 𝝃 . Here, we adopt the 

transformation function in [1] to perform this operation. 

𝒒𝒊 = 𝝎(𝒑𝒊, 𝑫𝒓(𝒑𝒊), 𝝃) (1) 

The camera pose 𝝃  is then iteratively estimated by 

minimizing the photometric error between the reference 

frame 𝑰𝒓  and the current frame 𝑰𝒓  using the following 

equation: 

𝒂𝒓𝒈 𝒎𝒊𝒏
𝝃

∑ (𝑰𝒓(𝒑𝒊) − 𝑰𝒄(𝒒𝒊))𝟐

𝒑𝒊∈𝜴

  (2) 
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Figure 2.  A demonstration of the illumination robustness of the darkest channel. Columns 1 and 2 show two images under different lighting 
conditions. Columns 3 and 4 show the intensity change values of the darkest channel and the brightest channel, respectively. Brighter parts in the 

image imply a more intense transformation in intensity. We can see the darkest channel changes less when the illumination changes 

In our method, the illumination-insensitive value (IIV) 

is utilized to measure the photometric error. 

𝒂𝒓𝒈 𝒎𝒊𝒏
𝝃

 ∑ (𝑰𝑰𝑽𝒓(𝒑𝒊) − 𝑰𝑰𝑽𝒄(𝒒𝒊))𝟐

𝒑𝒊∈𝜴

 (3) 

where 𝑰𝑰𝑽𝒓(𝒑𝒊)  is a synthesis of three illumination-

insensitive indicators of the reference frame and 𝑰𝑰𝑽𝒄(𝒑𝒊) 

for the current frame. The derivation of indicators is 

discussed in the following part. 

The illumination-insensitive indicators are derived 

from the imaging model. Fig. 1 shows a general imaging 

process in which a light source emits a beam of light onto 

the object, and the light is reflected by the surface of the 

object and is finally perceived by a camera. Ratnasingam 

and Collins[14] provided a model to represent this 

process: 

𝑹𝒙,𝑬 = 𝒂𝒙𝒏𝒙𝑰 ∫ 𝑺𝒙 (𝝀)𝑬(𝝀)𝑭(𝝀)𝒅𝝀 (4) 

where 𝒙  represents an arbitrary point on the image, 

which is also associated with a point in the 3D real world; 

𝑹𝒙,𝑬  is the intensity of the point under the specific 

spectral distribution 𝑬 of the light source; 𝒂𝒙 is the input 

direction of the light; 𝒏𝒙 is the normal of the surface near 

the corresponding real world point of 𝒙 ; 𝝀  is the 

wavelength of different components in the light; 𝑰  and 

𝑬(𝝀)  represent the intensity and spectral density per 

wavelength of the light source, respectively; 𝑺𝒙(𝝀) is the 

surface reflectively at point 𝒙; and 𝑭(𝝀)  represents the 

sensitivity of the camera to different wavelengths. 

The model of equation (4) is precise but hard to use 

because it contains too many parameters. With the help of 

some other studies, a more practicable equation is derived 

from (4). First, Jiang et al.’s work[15] shows that 𝑭(𝝀) 

has a narrow response range so we can use a Dirac delta 

function to represent it. Second, according to Finlayson’s 

et al.’s work[16], 𝑬(𝝀) obeys Planck’s law so it can be 

rewritten in a simple form. Finally, [14] and [4] provide a 

derivation of (4). 

𝒍𝒐𝒈 𝑹𝒊 = 𝒍𝒐𝒈(𝑮𝒙𝑰) + 𝒍𝒐𝒈(𝒉𝒄𝟐𝝀𝒊
−𝟓𝑺𝒊) −

𝒉𝒄

𝒌𝑩𝑻𝝀𝒊
 (5) 

where 𝒉 is the Planck constant, 𝐜 is the speed of light, 

𝒌𝑩 is the Boltzman constant, 𝑮𝒙 = 𝒂𝒙𝒏𝒙 , and  𝑻  is the 

correlated colour temperature of the light source. There 

are three illumination-relevant values: the 𝑮𝒙 of the light 

direction, the 𝑰 of the light intensity and the 𝑻. Thereby, 

we can obtain the illumination-insensitive indicators by 

removing the above items, which is done by taking into 

account the RGB colour channel. 

We adopt [4] to obtain the first illumination-insensitive 

indicator in this paper. 

𝓘𝟏 = 𝐥𝐨𝐠(𝑹𝒈) − 𝜶 𝐥𝐨𝐠(𝑹𝒓) − (𝟏 − 𝜶) 𝐥𝐨𝐠(𝑹𝒃) (6) 

where 𝛼  is estimated by the following equation to 

remove the illumination-relevant terms: 

𝒉𝒄

𝒌𝑩𝑻𝝀𝒈

− 
𝜶𝒉𝒄

𝒌𝑩𝑻𝝀𝒓

−
(𝟏 − 𝜶)𝒉𝒄

𝒌𝑩𝑻𝝀𝒃

= 𝟎 (7) 
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which can be simplified to 

𝟏

𝝀𝒈

−
𝜶

𝝀𝒓

−
𝟏 − 𝜶

𝝀𝒃

= 𝟎 (8) 

where λg, λr and λb are the camera’s intrinsic parameters 

representing the most sensitive wavelengths of the 

camera’s green, red, and blue channels, respectively. 

These parameters can be measured by a monochromator 

and a spectrophotometer[17]. Therefore, ℐ1 contains only 

the illumination-irrelevant terms and can be calculated 

using only the measurable parameters. 

However, using this indicator alone has some 

limitations. First, as discussed above, the measurement of 

𝜆𝑖  requires extra equipment, which can be used only in 

the lab environment. Second, 𝜆𝑖 has its own error, which 

cannot be avoided by using only one indicator. Third, 

with only one single indicator, the different reflectance 

values could be confused.[18] Therefore, we derive two 

other 𝜆𝑖 -irrelevant indicators to overcome the above 

limits. One of them is defined as 

𝓘𝟐 =
𝒍𝒐𝒈(𝑹𝒓) − 𝒍𝒐𝒈 (𝑹𝒈)

𝒍𝒐𝒈(𝑹𝒃) − 𝒍𝒐𝒈 (𝑹𝒈)
 

=

𝒍𝒐𝒈 (
𝑺𝒓

𝑺𝒈
) + 𝒍𝒐𝒈[𝑬(𝝀𝒓)] − 𝒍𝒐𝒈 [𝑬(𝝀𝒈)]

𝒍𝒐𝒈 (
𝑺𝒃

𝑺𝒈
) + 𝒍𝒐𝒈[𝑬(𝝀𝒃)] − 𝒍𝒐𝒈 [𝑬(𝝀𝒈)]

 

=

𝒍𝒐𝒈[
𝑺𝒓

𝑺𝒈
] − 𝒍𝒐𝒈 [

𝑬(𝝀𝒓)

𝑬(𝝀𝒈)
]

𝒍𝒐𝒈[
𝑺𝒃

𝑺𝒈
] − 𝒍𝒐𝒈 [

𝑬(𝝀𝒃)

𝑬(𝝀𝒈)
]
 

(9) 

 

Figure 3.  The demonstration of the optimization process. 

Assuming that 𝑬(𝝀) is constant, 𝓘𝟐  contains only the 

illumination-irrelevant components. Actually, in short-

term travel, 𝑬(𝝀) usually keeps the same value because 

the type of light source rarely changes. For example, in a 

daylight scene, the light source is always the sun, and 

only the direction of light affects the illumination. 

Therefore, ℐ2  is useful to resist frame-to-frame 

illumination changes. 

If 𝑬(𝝀)  changes, we provide another indicator to 

improve the illumination robustness. 

𝓘𝟑 = 𝒎𝒊𝒏 𝑹𝒊 , 𝒊 = 𝒓, 𝒈, 𝒃 (10) 

The definition of this indicator means that we choose 

the darkest channel of the pixel as ℐ𝟑. To find the 𝑬(𝝀)-

insensitive indicator, we take advantage of the dataset of 

ALOI[5], which contains 1000 sets of image taken under 

12 different light temperatures. A measurement of the 

average intensity changes of separated channels under 

different light temperatures is performed. The result, as in 

Fig. 2, shows that the darkest channel tends to keep the 

same value during the light change. The average intensity 

change of the darkest channel is 23 compared to 52 for 

the brightest channel. Occasionally, the opposite case 

occurs, but we could still use this indicator in most of 

situations because a smaller intensity value usually 

implies a smaller 𝑆𝑖  so that it changes less under the 

imaging model expressed in equation (1). 

With the above three indicators, we can define 𝑰𝑰𝑽. 

𝐈𝐈𝐕(𝐩𝐢) =  √ (𝐰𝓘𝟏)𝟐 + [(𝟏 − 𝐰)𝓘𝟐∘𝟑]𝟐 (11) 

where 𝒘 is a weight to measure the reliability of the two 

indicators 𝓘𝟏 and 𝓘2∘3, and 𝓘2∘3 is a linear combination of 

𝓘𝟐  and 𝓘𝟑 . In practice, 𝓘𝟏  and 𝓘2∘3  have different 

contributions to the 𝑰𝑰𝑽 because they result in different 

types of error and describe different aspects of the 

illumination-insensitive components. Thus, 𝒘 is applied 

to them to represent the difference. 𝓘2+3 is defined as 

𝓘𝟐∘𝟑 =  
𝜷𝓘𝟐 + 𝜸𝓘𝟑

𝜷 + 𝜸
 (12) 

where 𝜷 and 𝜸 are the weights based on the change of the 

colour balance. Since 𝓘𝟐 is based on the assumption of a 

constant 𝑬(𝝀) and 𝓘𝟑 compensates for the error caused by 

𝑬(𝝀)  changes, ℐ2∘3  provides a better estimate of 

illumination-insensitive components. The calculations of 

𝒘, 𝜷 and 𝜸 are discussed in III-B. 

In conclusion, in this section we demonstrated how 

𝑰𝑰𝑽  works in the pose tracking process and provided 

three illumination-insensitive indicators to help build 𝑰𝑰𝑽. 

We also gave the weighted relations between 𝑰𝑰𝑽 and the 

three indicators. 

B. Kalman-filter-based Optimization Model 

In this section, we demonstrate the estimation of the 

weights, which help to merge the three indicators. First, 𝜷 

and 𝜸 are calculated by functions of colour balance. Then, 

𝒘  is calculated with a KF-based method. A 

demonstration of the entire optimization process is shown 

in Fig. 3. 

𝓘𝟐 is provided under the assumption of a constant 𝑬(𝝀), 

which is normal in our practice. However, in the case of 

an abrupt change of 𝑬(𝝀) , the accuracy of 𝓘𝟐  will be 
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rapidly reduced. In contrast, 𝓘𝟑 resists 𝑬(𝝀) changes but 

causes confusion due to decreased contrast. Therefore, we 

utilize the two weights 𝜷 and 𝜸 to measure the different 

accuracies of 𝓘𝟐 and 𝓘𝟑 under variant light temperatures. 

First, we define a colour balance change between two 

frames as 

∆𝒄 = −(𝒆
−

∑ 𝑰𝒓
𝑹(𝒑)𝒑∈𝜴

∑ 𝑰𝒓
𝑩(𝒑)𝒑∈𝜴 − 𝒆

−
∑ 𝑰𝒄

𝑹(𝒒)𝒒∈𝜴

∑ 𝑰𝒄
𝑩(𝒒)𝒒∈𝜴 ) 

(13) 

where 𝑰𝒓
𝑹(𝒑) is the red channel intensity of point p in the 

reference frame  𝒓 , 𝑹  indicates the red channel，and 

𝑰𝒓
𝑩(𝒑), 𝑰𝒄

𝑹(𝒒) and 𝑰𝒄
𝑹(𝒒) are similar. We assume that the 

distance (both position and orientation) between two 

frames is short enough so that only a small amount of 

pixels change. In this situation, the ratio of red channel to 

blue channel can be approximately estimated using the 

global sum value. Here, ∆𝑐  has two aspects. First, it is 

literally the ratio of red channel to blue channel. Second, 

it is the light temperature change, which is affected 

mainly by the red and blue components. The dual 

character of ∆𝒄 makes it useful in estimates of both 𝜷 and 

𝜸. 

Because 𝓘𝟐  obeys the assumption of an invariant 

spectral distribution, 𝜷 is defined as a Boolean function: 

𝜷 = {
𝟏,   |∆𝒄| ≤ 𝒕 
𝟎,   |∆𝒄| > 𝒕

 (14) 

where t gives a tolerance of the error in the computation 

of ∆𝒄. We estimate it by calculating the average error of 

∆𝒄 in the New Tsukuba Stereo Dataset[6]. 

Figure 4.  The linear relation between the intensity deviation of the 
darkest channel and the light source temperature. Note that both the 

axes are exponentiated. 

The estimation of 𝜸 is based on an analysis of ALOI 

[5]. Fig. 4 shows the linear relation between the intensity 

deviation of the darkest channel and the light source 

temperature change. Note that 𝑰𝒓(𝒑𝒊)  is normalized to 

resist the light intensity change. Thus, 

𝒆 𝓘𝟑−𝑰𝒓
𝒅𝒂𝒓𝒌(𝒑) = 𝒌 ∆𝒄 + 𝒃 (15) 

where 𝑰𝒓
𝒅𝒂𝒓𝒌(𝒑) is considered to be the true intensity of 𝒑. 

We define 𝜸 as 

𝜸 =  
𝓘𝟑 − 𝒍𝒐𝒈(𝒌 ∆𝒄 + 𝒃)

𝓘𝟑

 (16) 

where 𝒌  and 𝒃  are calculated using the least squares 

method to fit the point pairs in ALOI with the variant 

light temperatures.  

Thus far, with the estimates of 𝜷 and 𝜸, the combined 

indicator 𝓘𝟐∘𝟑
 is generated with robustness to both light 

intensity deviations and spectral distribution changes.  

𝓘𝟏
 and 𝓘𝟐∘𝟑  describe the illumination-insensitive 

components in different views, so that the magnitude of 

vector (𝓘𝟏, 𝓘𝟐∘𝟑 ) is illumination robust and, moreover, 

more distinguishable than any single indicator of these 

two. However, their respective reliabilities vary 

according to different scenes. For example, 𝓘𝟏  follows 

the assumption of a narrow response range so that its 

accuracy is degraded when the camera is sensitive to a 

wide band of wavelengths. 𝓘𝟑
 remains more constant 

under the high contrast of different channels, which 

means 𝓘𝟐∘𝟑 works better in more “colourful” scenes. Thus, 

we assign a weight to adjust the magnitude according to 

the scene and provide a KF-based method to dynamically 

estimate the weights during travel.   

𝒘 is associated only with key frames because the scene 

change is a long-term process and successive adjustment 

is not necessary. An iteration method is applied to update 

𝒘 frame by frame. For every new frame, we first utilize 

the reference weight 𝒘𝒓
 to calculate 𝑰𝑰𝑽 and the camera 

pose 𝝃. The following equation is then solved to find a 

better estimate of 𝒘𝒊
 at specific point 𝒑: 

𝑰𝑰𝑽(𝒑𝒊)
𝒑𝒊∈𝜴𝑫

= √ 𝒘𝒊
𝟐𝓘𝟏(𝒒𝒊)𝟐 + (𝟏 − 𝒘𝒊)𝟐𝓘𝟐∘𝟑(𝒒𝒊)𝟐

 
(17)
 

where 𝒒𝒊 is calculated by equation (2), and 𝜴𝑫

 
signifies 

the points with depth information 𝑫(𝒑) . Then, the 

measurement of the entire current frame 𝒘𝒄

 
is calculated 

as the average of all 𝒘𝒊, and the variant of 𝒘𝒄 is recorded 

as
 

𝝈𝒄 = √
𝟏

𝜴𝑫 − 𝟏
∑ (𝒘𝒊 − 𝒘𝒄)𝟐

𝒑𝒊∈𝜴𝑫

 
(18)

 

We use the Kalman filter to merge 𝒘𝒄

 
into 𝒘𝒓

 
and 

treat 𝝈𝒄

 
as a 1-D covariance of the observation noise.   
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Figure 5. 
 

Examples of New Tsukuba Stereo Dataset and our UR-10-based dataset. The left group of images is the New Tsukuba Stereo Dataset. 
Clockwise from the top

 
left: Daylight, flashlight,

 
lamp

 
and fluorescent

 
light. The right group of images is our UR-10-based dataset, and each image 

is extracted from four independent tracks.
 

TABLE I.  SUCCESSFUL TRACKING RATE DURING DIFFERENT ILLUMINATION 

    

             Track 1 
Track 2 

Daylight Flashlight Lamp Fluorescent 

LSD-
SLAM 

Our 
LSD- 

SLAM 
Our 

LSD-
SLAM 

Our 
LSD-

SLAM 
Our 

Daylight 96.1 95.2 45.2 52.1 54.3 60.7 72.4 87.8 

Flashlight 37.2 46.5 92.2 94.6 0.0 0.0 49.1 47.4 

Lamp 24.6 40.0 32.7 37.1 89.6 93.5 78.6 89.7 

Fluorescent 71.2 86.7 47.3 52.4 55.6 67.2 96.5 96.1 

 

C. Gradient Magnitude Method 

The use of 𝑰𝑰𝑽  inevitably causes a degradation of 

distinctiveness, which means multiple pixels with 

different intensities may share a similar 𝑰𝑰𝑽  value. To 

compensate for this degradation, we employ the gradient 

magnitude method, which shows great illumination 

robustness and an acceptable computational complexity 

according to [19]. After updating the frame with 𝑰𝑰𝑽, we 

further calculate the gradient magnitude of pixel 𝑝 in a 

3 × 3  neighbourhood. The final illumination-insensitive 

value of a single pixel is defined as follows: 

𝑰𝑰𝑽𝒈𝒎 = √
𝝏𝑰𝑰𝑽(𝒑)

𝝏𝒙

𝟐

+
𝝏𝑰𝑰𝑽(𝒑)

𝝏𝒚

𝟐

 (19) 

IV. EVALUATION  

We evaluate the illumination robustness of our method 

by a comparison with the LSD-SLAM method[1]. The 

evaluation is performed on three databases: the New 

Tsukuba Stereo Dataset[6] with synthetic scenes, the 

natural indoor scenes under flashlight illumination 

collected by a UR 10 robot, which has the ground truth 

camera position (GT data), and another natural indoor 

scene under variant illumination (No-GT data). 

The New Tsukuba Stereo Database provides four tracks 

of the same path under different synthetic illumination 

conditions. To provide a natural dataset, we utilize the 

UR 10 to collect four tracks under flashlight illumination. 

Some examples of the two datasets can be seen in Fig. 5. 

We also provide a dataset with no ground truth data, 

which includes 100 sets of images under 7 different 

illumination conditions to extend the range of 

illumination change types. Some samples can be seen in 

Fig. 6. 

The experiments evaluate three aspects of the provided 

method. First, we perform our method and the method of 

Maddern et al.[4] on the No-GT data to prove that the 

multiple indicators method is superior to the single 

indicator method. We apply the two methods on images 

under different illumination conditions and then perform 

the SIFT[20] method on the enhanced images to match 

the feature points. A larger volume of correctly matched 

points shows the better illumination robustness of the 

method. 
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Figure 6.  Qualitative results of feature point extraction with different methods. (a) Image under a specific illumination condition. (b) Image taken at 

the same view under different illumination conditions, with the SIFT feature points. (c) Feature points extracted by SIFT with Maddern’s work. (d) 
Feature points extracted by SIFT with our work. The yellow circles imply the feature points that are kept during the RANSAC process. 

Second, we test the localization robustness of our 

method using
 
the New Tsukuba Stereo Dataset[6]. In the 

test, we perform the target method on two tracks under 

different illumination conditions and record the 

successful retrieval rate of the frames in the second track 

against the key-frames in the first track, which is similar 

to the approach in Pascoe et al.[8].
 

In the past few years, the SLAM method has focused
 

on not only the tracking accuracy but also the mapping 

quality. Therefore,
 
we design the experiment to evaluate 

the mapping performance of our method in a challenging
 

environment. We compare our method with the LSD-

SLAM method on the flashlight scene of the New 

Tsukuba Stereo Dataset
 
and the GT data and record the 

number of reconstructed points.
   

A.
 

Multiple Indicators Performance
 

Three methods are compared in this experiment: the 

SIFT method, the SIFT method with

 

a single indicator[4] 

and the SIFT method with our multiple indicators. For 

every set in the GT data, we first

 

extract the feature 

points on the two images under different illumination 

conditions and

 

then match these points to record the 

number of correctly matched point pairs. A RANSAC 

method is employed to filter out incorrect matching. Fig. 

6 shows some qualitative results. We record the average 

matched number of every set of images, which is shown 

in Fig. 7.

 

The results show that although

 

the single indicator 

method improves the SIFT feature quality under varying 

illumination conditions, the multiple indicator method has 

a better illumination robustness. The reason is that the

 

single indicator reduces the distinctiveness of the pixel, 

and the multiple indicators help to recover it in a

 

way.
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TABLE II. 
 

NUMBER OF RECONSTRUCTED POINTS AND TRACKING ACCURACY
 

 
            Track 

Method 

NTSD GT data track 1 GT data track 2 GT data track 3 GT data track 4 

Point 

Number 

Accuracy 

(mm) 

Point 

Number 

Accuracy 

(mm) 

Point 

Number 

Accuracy 

(mm) 

Point 

Number 

Accuracy 

(mm) 

Point 

Number 

Accuracy 

(mm) 

LSD-SLAM 8245 99.2 3221 84.3 6795 63.5 3542 82.3 3196 87.2 

Ours 9459 87.1 4231 81.1 9742 45.2 4672 77.1 4593 84.1 

 

 B.

 

Localization Performance

 
We apply the LSD-SLAM

 

method

 

and our method on 

the New Tsukuba Stereo Dataset to measure the retrieval 

rate. Table I

 

shows the percentage of frames

 

located in 

the second track against the key

 

frames in the first track.

 
Our method is superior to the LSD-SLAM method in 

most of the experiments,

 

which shows its high 

illumination robustness.

 C.

 

Mapping Performance

  
We utilize both the synthetic and natural methods

 

to 

evaluate the mapping quality of our method. The 

flashlight scene is a typical challenging

 

environment 

because the movement of the light source causes uneven 

local changes of intensity. We apply the LSD-SLAM 

method and our method on five tracks, one of which is 

extracted from the New Tsukuba Stereo Dataset and four 

of which are from the GT data. The number of 

reconstructed points is shown

 

in Table II 

 

along

 

with the 

tracking accuracy in millimetres. We can see that our 

method reconstructed more points than the LSD-SLAM

 
method,

 

while retaining a high localization accuracy.

 D.

 

Limitations

 
Despite the high illumination robustness, the provided 

method still has some limitations. First, the computational 

complexity

 

of our method is higher than that of the LSD-

SLAM method due to the extra computation of 𝑰𝑰𝑽. Even 

when we try not to involve the weight optimization in the 

iteration calculation of 𝝃, this method can only perform at 

10 Hz on a desktop CPU. Second, the provided method 

cannot handle extreme lighting changes such as complete 

darkness, and failure occurs when the flashlight 

illuminates only a small area. 

V. CONCLUSION 

This paper provides an illumination robust monocular 

direct SLAM method that takes advantage of RGB 

channel information to find the illumination-insensitive 

components and, thus, achieve pixel-level invariance 

under different lighting conditions. We propose three 

indicators that consist of illumination-invariant terms and 

provide an optimization method to merge them into the 

same framework. The main contributions of this work are 

as follows. (1) In contrast to the single indicator method, 

our method utilizes multiple indicators to reduce the 

confusion of contrast associated with decreases in colour 

information. (2) The KF-based optimization method 

makes it possible to dynamically adjust the weight of the 

indicators so that the illumination robustness is improved 

under different lighting conditions. (3) The gradient 

magnitude improves the distinctiveness of the pixels and, 

thus, increases the successful matching rate between the 

points. The provided method shows an advantage in 

illumination robustness compared to that of the state-of-

the-art direct SLAM method. We believe our method can 

extend the application range of the SLAM method in 

terms of rapidly changing illumination conditions. 
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