Research on the Calculation of Lightning Trip Flashover Rate for 10kV Distribution Line without Grounding Line

Tang Xiaoliang, Zeng Suiming, Yang Fang
Qingyuan Power Supply Bureau of Guangdong Power Grid Company, Guangdong, China
Email: yangfang118@163.com

Yang Zhining, Wu Xixiu*
Wuhan University of Technology, Hubei, China
Email: wuxixiu@163.com

Abstract—For the reason that seldom research has been studied on the lightning trip flashover rate (LTFR) of distribution line, this paper focus on studying the calculation method about LTFR. The distribution line without mounting grounding line, flashover is mainly caused by direct stroke lighting and induced stroke lighting. Then, a conclusion can be drawn that LTFR is made up of direct stroke lightning trip rate and induced stroke lightning trip rate. Based on these, a model which can consider the structure of the distribution network, the type of grounding and lighting withstand level (LWL) is established. Furthermore, ATP-EMTP and the mirror method is applied to calculate the flashover probability caused by direct stroke lightning and the induced stroke lightning respectively. Moreover, to check the accuracy of the model, a typical 10kV distribution line in high lighting stroke area of China which is called Gaotian Line is chosen and the LTFR of the line is computed as well. The result shows that the computed result is very close to the reality, which proves the correctness of the model.

Index Terms—lightning trip flashover rate, grounding line, ATP-EMTP, mirror method, lighting withstand level, distribution network

I. INTRODUCTION

The power distribution insulation level is very low, therefore it often suffers lighting strike, which seriously threaten the reliability of power system [1]. So, it’s very important to improve the LWL of distribution network for insuring power reliability. Up to now, seldom research has been studied on LTFR of 10kV distribution line, which results in the mechanism of LTFR can’t be understood rightly and clearly. solve the problem, this paper focus on the calculation method of LTFR especially for the distribution line without mounting grounding line [2]. Research shows that, for distribution system without grounding line, direct stroke lightning and induced stroke lightning may cause insulator flashover and breaker tripping. Therefore, the model of direct stroke lightning trip rate and induced stroke lightning trip rate have been established and ATP-EMTP and the mirror method is applied to calculate the flashover probability. Moreover, to check the accuracy of the model, a typical 10kV distribution line in high lighting stroke area of China which is called Gaotian Line is chosen and the LTFR of the line is computed as well. The result shows that the computed result is very close to the reality, which proves the correctness of the model.

II. THE LTFR MODEL’S ESTABLISHMENT

For distribution system without grounding line, the trip out of breaker is mainly caused by direct stroke lightning and induced stroke lightning. Therefore, LTFR consists of direct stroke lightning trip rate n_1 and induced stroke lightning trip rate n_2.

$$n = n_1 + n_2$$ (1)

$$n_1 = N \cdot p_1 \cdot ((P_{A,B} - P_{A,B,C}) + P_{A,B,C}(2 - \eta)) \cdot \eta$$ (2)

$$n_2 = N \cdot p_2 \cdot ((P_{A,B} - P_{A,B,C}) + P_{A,B,C}(2 - \eta)) \cdot \eta$$ (3)

where, N is flash collection rate, (flashes/100km/year). p_1 is the probability of direct stroke lightning. p_2 is the probability of striking on the floor, considering the structure of distribution network, $p_1 = p_2 = 0.5$. $P_{A,B}$, $P_{A,B,C}$ are the probability of two-phase flashover and three-phase flashover caused by direct stroke lightning, respectively. $P_{A,B}$, $P_{A,B,C}$ are the probability of two-phase flashover and three-phase flashover caused by induced stroke lightning, respectively. η is arcing rate.

III. CALCULATION OF KEY PARAMETERS

A. Calculation of Probability of Direct Stroke Lightning Flashover

As shown in (2), the direct stroke lightning trip rate n_1 depends on the value of $P_{A,B}$, $P_{A,B,C}$. Then, to calculate these parameters, the model of 10kV distribution line suffered the direct stroke lightning is established and
ATP-EMTP is applied to calculate $P_{A,B}$ and $P_{A,B,C}$ [3], [4] (Fig. 1).

![Figure 1. The model of 10kV distribution line suffered direct stroke lightning in ATP-EMTP.](image)

It is very difficult and complicated to find out the value of LWL when the ATP-EMTP software is running. So, trial-and-error method is used to search the LWL. If the voltage of insulator becomes zero, flashover is occurring, the lighting current under this condition is just the LWL. And then, $P_{A,B}$ and $P_{A,B,C}$ can be obtained by using the probability statistics equation of lighting current exceeding LWL (Fig. 2-4).

![Figure 2. Simulation waveform of single-phase flashover under direct stroke lightning.](image)

![Figure 3. Simulation waveform of two-phase flashover under direct stroke lightning.](image)

Then, the flashover probability of two-phase or three-phase under the condition of direct stroke lightning can be written as,

$$P_{A,B} = 10^{-\frac{I_d}{44}}$$ \hspace{1cm} (5)

$$P_{A,B,C} = 10^{-\frac{I_d}{44}}$$ \hspace{1cm} (6)

where, I_d, I_t are the LWL of two-phase flashover and three-phase flashover under direct stroke lightning, respectively.

![Figure 4. Simulation waveform of three-phase flashover under direct stroke lightning.](image)

B. Calculation of Flashover Probability of Induced Stroke Lightning

To calculate the probability of two-phase and three-phase flashover caused by induced stroke lightning. To get P_{AB}', the induced overvoltage of insulators under induced stroke lightning condition must be calculated at first [5]-[7].

The flashover overvoltage of conductor caused by induced stroke lightning can be calculated by the following equations,

$$U'_{A,B} = \frac{U_{A,B}}{0.1h_{gt}}$$ \hspace{1cm} (7)

$$U_{A,B} = \frac{U_{50kV} (Z_{AA} + 2R)}{Z_{AA} (1-k_{AB})}$$ \hspace{1cm} (8)

$$Z_{AA} = 60\ln\frac{2h_A}{r_A}$$ \hspace{1cm} (9)

where, h_{gt} is the height of the tower, (m). U_{50kV} is the flashover voltage of insulator, (kV). Z_{AA} is the surge impedance of phase A. R is the grounded resistance, (Ω). k_{AB} is the dimension coupling coefficient. r_A is the radius of conductor A, (cm). h_A is the height of the conductor A, (m).

Taking the height of the tower into consideration, the three-phase flashover overvoltage caused by induced stroke lightning can be calculated by function (10),

$$U'_{A,B,C} = \frac{U_{A,B,C}}{0.1h_{gt}}$$ \hspace{1cm} (10)
where, $U_{A,B,C}$ can be gotten using the following expression,

$$U_{A,B,C} = \frac{U_{spo}(Z_{eq} + 2R)}{Z_{eq}(1-k_{ABC})}$$ \hspace{1cm} (11)

where, k_{ABC} is dimension coupling coefficient among three phase A, B and C. Z_{eq} is equivalent surge impedance. Z_{AB} is the mutual surge impedance between phase A and B.

The relationship between Z_{eq} and Z_{AA}, Z_{AB} is shown as following,

$$Z_{eq} = (Z_{AA} + Z_{AB})/2$$ \hspace{1cm} (12)

Generally, for multi-conductor transmission line, mirror method is used to solve the surge impedance, such as the calculation of Z_{AB}, which is shown in Fig. 5.

$$Z_{AB} = \ln \frac{d_{AB}'}{d_{AB}}$$ \hspace{1cm} (13)

![Figure 5. The mirror point of three phase distribution line.](image)

As shown in Fig. 5, point A, B, C represents phase A, B and C of 10kV distribution line, respectively. And A’, B’ and C’ are the corresponding mirror point of A, B, C. d_{XY} is the distance between point X and point Y.

$$k_{ABC} = \frac{Z_{AC} + Z_{BC}}{Z_{AA} + Z_{AB}} = \frac{\ln \frac{d_{AC}'}{d_{AC}} + \ln \frac{d_{BC}'}{d_{BC}}}{\ln \frac{2h_A}{r_A} + \ln \frac{d_{AB}'}{d_{AB}}}$$ \hspace{1cm} (14)

According to the mirror method, $d_{AC}', d_{BC}', d_{AB}'$ can be expressed as,

$$d_{AC}' = \sqrt{(2h_A)^2 + (d_{AC})^2}$$ \hspace{1cm} (15)

$$d_{BC}' = \sqrt{(h_B + h_C)^2 + (d_{BC})^2}$$ \hspace{1cm} (16)

$$d_{AB}' = \sqrt{(h_A + h_B)^2 + (d_{AB})^2}$$ \hspace{1cm} (17)

where, h_A, h_B, h_C are the height of the conductor A, B, C, respectively, (m). The value of $P_{A,B}$ and $P_{A,B,C}$ can be easily obtained when the $U_{A,B}$ and $U_{A,B,C}$ is calculated [8].

C. Calculation of Lightning Strike Probability

Lightning strike probability can be expressed as,

$$N = 0.1 \cdot N_g (b + 4h_g^2)$$ \hspace{1cm} (18)

where, N_g is ground flash density, (times/km²·a), b is the distance between two grounding lines, (m). For the distribution line without grounding line, b equals zero, $b=0$.

D. Calculation of Ground Flash Density

According to IEEE guide for improving the lightning performance of electric power overhead distribution lines (IEEE Std 1410™-2010), ground flash density N_g can be gotten using the following equation,

$$N_g = 0.047d_d^{1.25}$$ \hspace{1cm} (19)

where, T_d is the number of days with thunder per year.

E. Calculation of Arcing Rate

For Chinese distribution system belonging to undergrounded system, arcing rate depends on the ionization degree of arc channel, the length of arc channel and system voltage, which can be written as,

$$\eta = (1.6 \cdot \frac{U_s}{l_{dis}})\cdot 10^{-2} = (1.6 \cdot \frac{U_s}{2(D+l)})\cdot 10^{-2}$$ \hspace{1cm} (20)

where, η is the probability of stable arc after two-phase flashover, the arcing rate. U_s is the voltage of system, (kV). l_{dis} is the length of discharge path when two-phase flashover, (m). D is the length of insulator, (m). l is the diameter of insulator, (m).

![Figure 6. The insulator used in 10kV distribution line.](image)

Fig. 6 is the schematic diagram of the insulator which is often used in 10kV distribution line, and the creep age distance of the insulator is obtained,

$$l_{dis} = 2(D+l)$$ \hspace{1cm} (21)

IV. CALCULATION OF LTFR OF DISTRIBUTION LINE IN A HIGH THUNDERSTORM REGION

A. Parameter of 10kV Distribution Network of A High Thunderstorm Region

To check the correctness of model, Gaotian Line in Qingyuan is chosen to calculate the LTFR (Table I).
TABLE I. Parameters of 10KV Distribution Line of Gaotian Line

<table>
<thead>
<tr>
<th>P</th>
<th>h_A</th>
<th>h_B</th>
<th>h_C</th>
<th>r_A</th>
<th>D</th>
<th>l</th>
<th>U_{10KV}</th>
<th>R_i</th>
<th>U_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>9.2</td>
<td>10</td>
<td>9.2</td>
<td>0.0075</td>
<td>0.377</td>
<td>0.06</td>
<td>210</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Note, P denotes parameters, V denotes the value of parameters. The unite of the parameters are m, except U_{10KV}, R_i, which the unites are kV and Ω, respectively.

B. Calculation of LTFR

Based on the above working, the parameters of (2) and (3) can be obtained which are listed in Table II.

TABLE II. The Parameters of Trip Out Model

<table>
<thead>
<tr>
<th>P</th>
<th>$P_{A,B}$</th>
<th>$P_{A,B,C}$</th>
<th>$P'_{A,B}$</th>
<th>$P'_{A,B,C}$</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.452</td>
<td>0.297</td>
<td>0.7</td>
<td>0.3</td>
<td>0.183</td>
</tr>
</tbody>
</table>

Using the date of Table II, the LTFR can be easily get,

$$n_1 = N \cdot p_1 \cdot [(A_{A,B} - A_{A,B,C}) + A_{A,B,C}(2 - \eta)] \cdot \eta \cdot 0.1 \times 10^{-2} T_d^{1.25}$$

$$=\{(0.452 - 0.297) + 0.297(2 - 0.183)\} \cdot 0.183$$

$$=1.02 \times 10^{-2} T_d^{1.25} \quad \text{(22)}$$

$$n_2 = N \cdot p_2 \cdot [(A_{A,B} - A_{A,B,C}) + A_{A,B,C}(2 - \eta)] \cdot \eta \cdot 0.1 \times 10^{-2} T_d^{1.25}$$

$$=\{(0.7 - 0.3) + 0.3(2 - 0.183)\} \cdot 0.183$$

$$=1.38 \times 10^{-2} T_d^{1.25} \quad \text{(23)}$$

Consequently, the total LTFR is,

$$n = n_1 + n_2 = 2.4 \times 10^{-2} T_d^{1.25} \quad \text{(24)}$$

After a series computing process, we get the mathematical expression between the thunder days and the trip out, as shown in (22), (23), (24), respectively.

Using the mathematical equation, the LTFR of Qingyuan under different thunder days is calculated, which is shown in Table III.

C. Analysis of Influence Factors

The fitting relationship between the thunder days and the LTFR from Table III, is shown in Fig. 7-9.

![Figure 7](image1.png)

Figure 7. Relationship between thunder days and the direct stroke lightning trip rate.

![Figure 8](image2.png)

Figure 8. Relationship between thunder days and the induced stroke lightning trip rate.

![Figure 9](image3.png)

Figure 9. Relationship between thunder days and the total LTFR.

Under the condition of direct stroke lightning, the function between direct stroke lightning rate n_1 and the thunder days T_d can be written as,

$$n_1 = -7.7 \times 10^{-4} T_d^3 + 7.8 \times 10^{-2} T_d^2 + 0.032 T_d - 0.27 \quad (25)$$

Under the condition of induced stroke lightning, we can get the fitting curve expression between induced stroke lightning rate n_2 and the thunder days T_d expresses as function (26),

$$n_2 = -1 \times 10^{-7} T_d^3 + 0.0001 T_d^2 + 0.043 T_d - 0.36 \quad (26)$$
According to the relationship curve in Fig. 9, the expression between stroke lightning rate \(n \) and thunder days \(T_d \) can be written as,

\[
n = -1.8 \times 10^{-7} T_d^3 + 0.00018 T_d^2 + 0.075 T_d - 0.63 \quad (27)
\]

From the curves and the equations above, a conclusion can be drawn that, the LTFR is in direct proportion to the thunder days, that is, the more days of thunder, the higher the LTFR. In addition, changing the value of LWL, the relationship curve between the LWL and the LTFR can be drawn as Fig. 10-13.

The expression between the direct stroke lightning rate \(n_1 \) and the LWL of two-phase flashover \(I_d \) can be written as,

\[
n_1 = -1.4 \times 10^{-6} I_d^5 + 2.4 \times 10^{-6} I_d^4 - 2.1 \times 10^{-3} I_d^3 + 0.013 I_d^2 - 0.49 I_d + 12 \quad (28)
\]

The value of the direct stroke lightning rate \(n_1 \) decreases with the increasing of the LWL of three-phase flashover \(I_t \),

\[
n_1 = -6.8 \times 10^{-9} I_t^5 + 1.5 \times 10^{-6} I_t^4 - 1.6 \times 10^{-3} I_t^3 + 0.011 I_t^2 - 0.39 I_t + 12 \quad (29)
\]

The mathematic function (31) is used to express the relationship between the stroke lightning rate \(n \) and the LWL of three-phase flashover \(I_t \),

\[
n = -6.8 \times 10^{-9} I_t^5 + 1.5 \times 10^{-6} I_t^4 - 1.6 \times 10^{-3} I_t^3 + 0.011 I_t^2 - 0.39 I_t + 21 \quad (31)
\]

From Fig. 10-13, a conclusion can be drawn from the relationship curves that the LTFR is in negative correlation with the LWL. Especially, compared with the LWL of three-phase flashover, the LWL of two-phase flashover has a greater influence on the LTFR.

V. CONCLUSION

For 10kV power distribution line without mounting grounding line, the LTFR caused by induced stroke lightning is higher than that of direct stroke lightning. The model reveals that the LTFR cause by direct stroke lightning depending on the LWL. While for the induced stroke lightning, the LWL has no influence on the LTFR which mainly relies on the flashover voltage.
Many factors have significant influence on the LTFR. Among them, the thunder days has the greatest effect on LTFR. The LTFR increases abruptly with the increasing of thunder days.

The LWL has great influence on n_1, while it almost has no influence on n_2.

The LTFR decrease with increasing of LWL under the condition of direct stroke lightning. Compared with the LWL of three-phase flashover, the LWL of two-phase flashover has a greater influence on the LTFR.

REFERENCES

Tang Xiaoliang was born in Hubei Province, China, in 1984. He received the M.E. degree from Jilin University, Jilin, China. At present, he is working as an engineer in Qingyuan Power Supply Bureau of Guangdong Power Grid Company, and his research interests include transmission and distribution.

Yang Zhining was born in Liaoning Province, China, in 1994. She received the B.E. degree in electrical engineering from Wuhan University of Technology, Wuhan, China. At current, she is candidate of the M.E. degree in high voltage and insulation technology. She is very interesting in distribution line, especially lightning protect and grounding.