
Test Automation Architecture for Automotive

Online-Services

Robin Steller
Beuth University of Applied Science, Berlin, Germany

Email: robin-steller@web.de

Marek Stess
Volkswagen Commercial Vehicles, Hanover, Germany

Email: marek.stess@volkswagen.de

Abstract—The car industry undergoes a big change,

triggered by modern agile methods for software

development. New software features can be rapidly

developed and instantly deployed. In contrast to that stands

the long development cycle of the vehicle and its hardware.

That hinders the development speed due to hardware

related dependencies. Vehicle hardware requires extensive

security measurements and procedures. Software embedded

directly on the hardware holds many dependencies, varying

for different car types within the same manufacturer. In the

typical software development an Operating System (OS)

diminishes these hardware dependencies and in the means

of web development even OS dependencies can be resolved,

enabling cross platform development. Therefore the

following paper focuses on the development of a test

automation architecture. It depicts how our architecture

can be built to combine long term vehicle development with

rapid agile software development and integrate them

together. We call this DeepTesting, the complete test

coverage of the software system with its services and

applications. Additionally the DeepTesting architecture will

consume real world test data to test software under nearly

real world condition.

Index Terms—automation, testing, architecture, continuous

integration

I. INTRODUCTION

In the last years mobile services have an important

factor in the automotive industry. The desires for

autonomous driving, passenger safety and user

entertainment have pushed the development of the

connected car and thus the need for online services,

communicating and exchanging data with the car over the

air [1], [2].

Volkswagen Commercial Vehicles currently develops

a mobile fleet management system called ConnectedVan

[3]. It enables users and companies to easily monitor their

vehicles. The user can record driver’s logbooks, fuel logs,

statistical reports and more.

The basic architecture behind the fleet management

system ConnectedVan is depicted in Fig. 1. In general we

Manuscript received August 21, 2018; revised May 10, 2019.

differ between two ways of data communication. Data

can be collected via the Online Connectivity Unit (OCU).

Figure 1. Basic Architecture of ConnectedVan

In older car models the vehicle data is transmitted via

the Onboard Diagnostics (OBD) and an OBD adapter.

The OCU is equipped with a SIM card to allow

communication Over-the-air. Starting in 2018 new

Volkswagen cars feature the OCU by default. The OBD

adapter is connected to the OBD and sends data to the

ConnectedVan application running on a bluetooth paired

device. Both, OBD and OCU, read out the signals of the

CAN bus (Controller Area Network) in the car. The CAN

serves as the main communication network for signals

within a vehicle [4].

All data collected from the vehicle is sent to the

Vehicle API (VAPI) for data transformation. The reason

for data transformation originates in the large variety of

car models, each providing different forms of object

models for their data, especially in older car generations.

To ensure object conformity for all backend services, the

VAPI converts all data to a standard object model.

After transformation the data is forwarded to the

Connected Fleet Backend (CFB) which serves as the

central business logic. The CFB holds all relevant

1

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering
doi: 10.18178/joace.7.1.1-7

backend services like vehicle-service, driver-service,

logbook-service and many more.

Due to multiple different devices and formats like

smart- phone, tablets and desktops, data will be further

transformed by the Frontend API (FAPI). That way all

business and user data is provisioned in a standardized

way to all applications. Current applications are the

Android, iOS and web app.

In this context following aspects become a problem in

terms of testing.

 Real world condition test are either not feasible or

require a non profitable effort. Testing the whole

system close to the reality would require

thousands of cars constantly performing test drives

to supply valid testing data. To the respect of real

time data transmission and the goal of constantly

available data, every kind of test drive (fast, slow,

crash, extreme weather conditions, etc) would

have to be performed at all times.

 Providing test coverage to the whole system is not

trivial. The architecture holds hard dependencies

on actual hardware (OBD, OBD adapter, OCU,

smartphone, vehicle, CAN, CAN adapters),

backend (APIs, micro services) and frontend

(desktop & smartphone client). Common test

automation architectures, explained later in the

paper, cover isolated components of such

architecture or can’t resolve hardware

dependencies.

 As a result of the previous point, embedding the

infrastructure into a continuous integration cycle

proves as challenging due to the variety of

dependencies. The goal is not only to test each

part of the architecture in isolation, but to enable a

deep test through the whole system. That testing

needs to be automated and integrated into the CI

process of daily software development.

By overcoming these problems and integrating a

DeepTesting architecture the speed of development and

the software quality will increase gradually. Big efforts of

manual testing can continuously be put into the actual

software development.

A. What Is Test Automation?

Test automation enables the developer to execute tests

on intervals or events, without having to perform any

manual task. That can be a routine running on a daily

base or an event triggering the test process e.g. new

commit [5]. As a definition of test automation we can

follow the statement that “test automation is the task of

creating a mechanically interpretable representation of a

manual test case” [6]. Automated tests should record

results that indicate whether the test passes or fails [5].

Different kinds of test types can be automated. They

will be mentioned in the further subsection. The industry

aims to automate as much of their test activity as possible

to increase the test coverage and quality, but also to

reduce costs for human resource, bug fixing, etc. The

expected increase of the test automation market will be

23,01% by 2022 [7]. Software testing itself makes up

50%-60% of the total cost of software development [8],

[9].

B. Types of Testing

Automation can be applied to various types and

dimensions of testing routines in software development.

Following types will be supported by the final

DeepTesting architecture.

 Unit Test
Unit tests check single functionalities and

methods of a software module, verifying its

correctness [10]. Test data is usually

provided e.g. mocked by the developer [11].

Possible test designs can be both, black-box

and white-box testing [12], [13].

 Integration Test
Integration tests ensure the correct

functionality of multiple components

working together [14]. That could be a test,

confirming the API’s correct

communication with the database. Common

integration test designs are top-down and

bottom-up [15].

 Regression Test
Goal of the regression test is the detection of

any (re)occurring errors, caused by newly

added code or functionalities [8]. As a result,

the whole application must be tested

thoroughly. Regression test is the most

time/effort consuming type of testing and

therefore predestined for automation [16].

C. Main Contribution

Because of the complexity of vehicles, the various

types of data that the vehicle transmits and the complex

system landscape of mobile online services it’s important

to create an architecture that empowers end-to-end test

automation. The DeepTesting architecture will enable

complete testability across multiple APIs, frontends and

services at once. That way multiple software components

can be integrated more easily, due to system wide test

coverage. It also enables testing of software without any

dependencies on the actual extensive car development

cycle and thus increases quality and velocity of

development.

The paper is structured into following Sections.

Section II analyzes the current state of the art in test

automation architectures. Section III outlines different

approaches for test data generation. Section IV describes

the DeepTesting architecture resolving the problems

displayed in Section I. The Section V displays the

conduct of the testing process and management. Section

VI examines the impact of the DeepTesting architecture

on the infrastructure and development. Section VII

concludes this paper and proposes future improvements.

II. STATE OF THE ART

This section depicts the currently utilized types of test

automation and its testing domain. To the best knowledge

of the author no publication of test automation

2

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

infrastructures or architectures for online services in the

automotive industry could be retrieved for this paper.

Publications available regarding automation in

automotive industry exclusively considered the software

or hardware of the vehicle itself.

A. Netflix

Netflix developed an architecture for automated testing

on various types of devices. Background is the huge

variety of gadgets Netflix is supporting with software.

Netflix runs its SDK on millions of devices, including

gaming consoles, TVs/STBs, tablets, smartphones,

laptops and computers [17]. The critical concept behind

Netflix’s setup is to reduce complexity of

creating/running test cases to ensure high agility [17].

As displayed in Fig. 2 the architecture contains three

major components: automation services, test suites and

test devices. The automation services are a set of external

backend services supporting the device handling,

execution of tests and providing external features for

testing. The connected test devices are connected to a

Test Portability Layer (TPL) to unify device specific

operations on an abstract layer. As a result different

devices can be engaged via the same interface. The test

runner supports the process of calling out to specific

devices and services needed for a test run. The test suite

only specifies the type of device and services. The runner

manages the communication.

Figure 2. Test architecture for GUI by Thalia [19]

Figure 3. Test architecture for devices by Netflix [17]

B. Thalia Holding

 Thalia, Germany largest book shop franchise [18],

created a test automation architecture for automating

regression tests against the GUI of their android and iOS

applications. The infrastructure consists of a CI server,

where the build of the applications and the test routines

are executed, see Fig. 3. The build job serves as a trigger

for the testing routine. As soon as a build of the

application succeeds, the artifact of the build job, e.g.

Android Package Application (APK) or iOS App Store

Package (IPA), is forwarded to the test job. After a

finished test run, the results of all tests are collected and

presented on the CI server [19]. The GUI tests are

designed as black-box tests and run as regression-tests

[19]. The tester only examines and tests the surface

without regarding the underlying internal structure of

code [20].

C. Summary

All of the above listed examples for test architectures

lack the capability of performing tests throughout the

whole system. They focus on single parts of the overall

system and test them in isolation, providing mock data or

similar. The setups also neglect one important

dependency and that is the dynamic data input which

originates from the vehicle in our case. Also, the data

supplied in the architectures is static and doesn’t need to

be generated or supplied in real time when executing test

cases.

III. DATA

A. Test Data Generation & Communication

Test data is generated by creating a dump of the CAN

bus data transmitted by the car. Data can be extracted via

the logging interface and the CAN bus by multiple

hardware devices. Hardware developed and currently in

use at Volkswagen are CarGate, Car Telematics (CaTe)

and a prototype called Car on Demand Interims Solution

(CDIS) [21]. These devices are connected to the logging

interface of the car and receive all data sent through the

CAN bus. The devices differ in performance and

transmission rate. CarGate features one low and one high

speed CAN-Port whereas the CaTe consists of one low

and four high speed CAN-Ports [21]. CDIS is the most

advanced hardware containing two low and four high

speed CAN-Ports.

The data received through the mentioned devices can

be accessed by connecting a Linux computer via TCP/IP

i.e. LAN [21]. The Linux cantools candump and cangen

are then used to extract and bundle the vehicle data into a

logfile, the CAN dump [22].

Another option of test data generation is a TestRack in

combination with CANoe ⃝ distributed by Vector. The

TestRack consists of multiple vehicle sensor and control

units employed in real cars. TestRack can simulate the

behavior, on signal level, of a car. The software CANoe ⃝

can read, manipulate and send data through the CAN of

the TestRack. Through user inputs such as varying speed,

car model, directions or fuel type, different test drives can

3

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

be performed and recorded. This however, collides with

the idea of providing data close to the reality, but is

applicable for early development and testing stages of the

architecture.

B. VirtualCarGate

VirtualCarGate (VCG) is a Debian virtual machine

which simulates an operating car. As illustrated in Fig. 4

VirtualCarGate consists of various cantools, an EXLAP

service and the generated logfiles. VCG utilizes the

cantool canplayer to simulate the needed CAN interface

[22], [23]. The canplayer then replays the complete

content of the logfile until the logfile exceeds or the

process is stopped.

VirtualCarGate features the Extensible Lightweight

Asynchronous Protocol (EXLAP) Service for

communication with other EXLAP-clients. EXLAP is a

protocol for client/server communication. EXLAP makes

use of a simplified XML scheme. VCG transmits its data

that is induced by the logfile and replayed by the

canplayer, via an EXLAP service. Other EXLAP clients

can subscribe to that service. The data will only be

published if the value of the subscribed property has

changed since its last publication [24].

Figure 4. Test data simulation and distribution

IV. DEEP TESTING ARCHITECTURE

This section outlines the DeepTesting architecture,

depicted in Fig. 5, with its single components and

employed technologies. The architecture consists of the

VirtualCarGate for data supply, the Playback Server to

trigger the test runs and the CI Server which stores and

runs the test scripts. The architecture envelopes the

ConnectedVan system mentioned in Section I and seen

on Fig. 1.

A. Playback Server

The Playback Server will serve as the data and test

management center. It should enable the user (developer,

QA engineer) to select a specific vehicle or desired test

drive and a set of tests that should be executed. The

playback server will then start a VirtualCarGate instance

to run the simulation process and channels the data to the

specific test set. If the data stream is provided, the

PlayBack server will then trigger the test job to run on the

CI server. If the test job is finished the playback server

will shut down the VirtualCarGate instance. The set of

tests selected on the playback server defines which parts

of the overall system will be needed for testing. That

could be a set running against a single specific service or

API while the GUI test job verifies the correctness of that

supplied data on the frontend.

The Playback Server also gives feedback about the test

result to the user. The feedback consists of simple data

whether the test fails or passes. Additionally the occurred

error is published and its location within the system.

Figure 5. Deep Testing Architecture

B. CI Server

The CI Server will contain the test jobs running against

the APIs, services and applications. Trigger can be either

the Playback Server, a specific event or a time interval for

the CI server to start the process. The Playback Server

provides the CI server, i.e. the test jobs, with the

connection information for the started VCG instance,

consisting of URL and port. The test job uses the URL

and port to instantiate an EXLAP client to establish the

data stream to the VCG instance and pulls the CAN data.

When the connection and stream is established, the actual

test script within the test job will be executed. The

services and APIs will be running as test instances on

other servers. These need to be accessible for the test jobs.

For early development and setup, mocked service

instances can be useful.

C. Devices

Devices will be connected to the CI server or any

available nodes. When connecting mobile devices the

completion of all verification steps must be done to

enable communication and debugging [19]. For testing

purpose emulators can be used to speed up development

4

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

of the infrastructure. Another alternative is a device farm

or device cloud where test devices and hardware are

provided as a service [25].

V. RUNNING SYSTEM

This section explains the methodology of initiating and

operating the test system. For illustration, the process of

an actual test case will be examined.

A. Test Setup

The example test case is kept simple. The user logs in,

starts a car trip, records the logbook and ends the trip. We

want to test the correctness of the VAPI data and perform

an UI test on the android and web application. The test

data used for the test case originates from a 30 minutes

drive with a Volkswagen Passat GTE. The extracted

logfile is placed within the VCG for playback.

On the CI Server a test job has to be created. The build

jobs need to employ a build script that checks out the

repository containing the test code and triggers the test

script builds and executions. The CI Server must expose a

REST API or other interface to enable communication to

the Playback Server. The Playback Server will then use

the REST interface to trigger test runs. The VCG will be

running on a typical web service host.

B. API & Service Test Script

All API and service test scripts for VAPI, CFB and

FAPI follow the same pattern of verifying incoming data

and checking the output data. To illustrate the process the

VAPI test is examined. The VAPI test script runs during

the complete test run. The script checks if the data sent by

the VCG and the mobile app are received and

transformed by the VAPI as expected in conjunction with

the test drive. As seen in Fig. 6 the data will be verified

before and after the transformation. Due to the fact that

the exact data transmitted by the test drive is known, its

correctness can be verified.

Figure 6. API Test

C. Mobile Test Script

The mobile UI test script is written in Java, utilizing

the espresso framework for android. The mobile

application is tested throughout the complete vehicle test

drive. The test job will perform following steps.

D. Web Test Script

The UI test script for the web application uses the

selenium framework. The web app will be tested after the

test drive has been ended and recorded. The web app acts

as an information portal, where all recorded trips to

certain vehicles or drivers can be reviewed. Thus no live

interaction occurs. These test steps need to performed.

VI. EXPERIMENTS AND RESULTS

For the applicable use cases of the product

ConnectedVan test drives have been recorded and linked

to specific test cases. In our first steps we were able to

generate test scripts for creating a driver’s logbook,

taking a business trip, creating a driver’s entry and the

edge case of an empty drive without data. The first use

case was examined in detail in Section V and was run

1119 times in total on a CI Server.

632 runs were successful, 312 failed and 175 contained

build error, as seen in Fig. 7. Build error means that the

test job itself was faulty and contained mistakes, which

happened in early development stages. For the 312 failed

build several factor have to be considered. The product is

still in development, therefore the frontends and APIs

were target of major changes. Anytime that happened, the

tests had to be adjusted as well. If not, the test failed.

In total 56 unique bugs were found by the

infrastructure, which are not related to any API or

frontend changes. The major part of the bugs consisted of

frontend bugs, which included wrong wordings, missing

fields or buttons and responsiveness. In terms of bugs

concerning the APIs and backends, several bugs were

located with missing data fields or unexpected values.

 Figure 7. Test Statistics

VII. CONCLUSIONS

With the DeepTesting Architecture we were able to

record and store test drives. We can launch them in an

automated way in conjunction with the corresponding test

cases triggered by new commits of the developers.

A. Positive

The architecture offers end-to-end testing through all

components of our software system from test drive

generation over APIs and services to the UI. We

successfully integrated use cases to be tested by the

architecture throughout all components. By splitting the

architecture into smaller components like the VCG,

Playback Server and the CI Server scaling becomes more

5

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

manageable. Multiple VCG instances can run at any time,

while having multiple test job instances running on the CI

server or CI slave. The Playback Server only has to

trigger and forward the information for the test jobs. For

large scale UI testing however, a device farm or device

cloud would be necessary.

B. Negative

The system needs a tremendous effort of developer

operations to enable communication and data flow

through all parts of the application. Communication must

also guarantee stability and integrity. As various

components might be added to the overall system,

adjustments have to be made for the test automation flow.

This outlines another effort which accompanies the

architecture, the effort of maintenance. Maintenance is a

critical factor in test automation for long term

development. If adjustments at the architecture become

more time consuming than the actual testing, the

architecture becomes obsolete.

Another field of improvement, though not directly

connected to the architecture itself is the generation of

test data. If a large variety of test drives are to be

available, the actual test drives have to be performed with

a real car in the real world. For edge cases like car

crashes or similar – safety, time and resources are

predominant factors to be considered.

Executing a test run takes up the exact duration of the

linked test drive logfile. This can cause complications

when the whole system needs to be tested quickly, in case

of time pressure. However there are current methods and

technologies to fast forward the simulation process which

will be implemented in the future.

C. Future

In the future more test cases will be examined and

executed to improve the stability and integrity of the

architecture. A possible improvement will be the usage of

device farms to enable a larger scale of test runs. Also the

impact of the architecture on the resulting code quality,

refactoring effort and software stability will be analyzed,

thus only being measurable over a longer time frame.

Furthermore a GUI will be created that enables non

technical users to create test cases. Single fragments of

tests can be put together to create a test suite.

ACKNOWLEDGMENT

The authors wish to thank Dr. Joost Garen, Dr. Timo

Graen, Fabian Hafen, Timo Krallmann, Martin Doering

and Kevin Schulze for the great support in the review and

refining process of this paper.

REFERENCES

[1] G. Iyer, “Connected cars - a state of the industry report,” 2016.
[2] F. Holmes, K. Nolan, C. Schreiner, and C. Dodge, “Special report:

Artificial intelligence and the auto industry,” 2017.s
[3] “Volkswagen ConnectedVan,” accessed: 2017-11-3. [Online].

Available: https://connectedvan.volkswagen-commercial-

vehicles.com/jctcvanfleetmgrTMP/connectedvan/fleetmanager/log
in

[4] B. Fijalkowski, Automotive Mechatronics: Operational and
Practical Issues, Springer Science, 2011, vol. 1.

[5] D. Hoffman, “Test automation architectures: planning for test

automation,” in Proc. Internation Quality Week, 1999.
[6] S. T. und S. Sinha und Nimit Singhania and S. Chandra,

“Automating Test Automation,” ICSE, 2012.
[7] “Test Automation Market by Test Type (Functional Testing,

Configuration Testing, Web Services Testing, Acceptance Testing,
Compatibility Testing, Integration Testing, Load Testing, Security

Testing, Mobile Testing, Migration Testing, Platform Testing,

Usability Testing, Network Testing and QA Process Design):
Global Industry Perspective, Comprehensive Analysis, and

Forecast, 2016 - 2022,” Tech. Rep., 2016.
[8] G. Myers, The Art of Software Testing. Wiley, 2011.
[9] R. R. und Wolfmaier K., “Economic perspectives in test

automation: balancing automated and manual testing with
opportunity cost,” in Proc. the 2006 international workshop on

Automation of software test, p. 8591, 2006.
[10] T. Xie, “Towards a framework for different unit testing of object-

oriented programs,” 2012.
[11] M. Fowler, “Mocks aren’t Stubs,” 2007.
[12] Y. W. Jerry Zeyu Gao, H. S. Jacob Tsao, Testing and Quality

Assurance for Component-based Software, Artech House, 2003.
[13] L. Williams, “White-Box Testing,” pp. 60–61, 2013.
[14] A. Hunt and D. Thomas, The Pragmatic Programmer, Addison

Wesley Longman, Inc., 2000.
[15] R. Binder, Testing Object-Oriented Systems: Models, Patterns,

and Tools. Addison Wesley, 1999.
[16] “Efficient Regression Tests for Database Applications,” Springer

Journal, 2006.
[17] F. Benoit, J. Ramachandran, T. Kaddoura, and G. Branco,

“Automated testing on devices,” accessed: 2018-01-17. [Online].

Available: https://medium.com/netflix-techblog/automated-
testing-on- devices-fc5a39f47e24

[18] M. Brück, “Buch-Profis übernehmen Thalia,” accessed: 2018-02-

09. [Online]. Available:
http://www.wiwo.de/unternehmen/handel/buchhandel-buch-

profis- uebernehmen-thalia/13858616.html
[19] R. Steller, “Entwicklung einer Testautomatisierungs-Infrastruktur

f ü r mobile Applikationen,” B.S. thesis, Beuth University of

Applied Science, Berlin, Germany, 2015.
[20] C. K. C. Mohammad Ali Darvish Darab, “Black-box test data

generation for GUI testing,” 2014.
[21] A. Höpfner and T. Fuchs, “Hardwarespezifikationen Telematikbox

CaTe,” Tech. Rep., 2015.
[22] O. Hartkopp, “Programmierschnittstellen f ü r eingebettete

Netzwerke in Mehrbenutzerbetriebssystemen am Beispiel des

Controller Area Network,” pp. 215–225, 2009.

[23] J. Krüger, “VirtualCargate 2nd Edition,” Tech. Rep., 2012.
[24] J. Krüger and H. C. Fricke, “EXLAP Specification version 1.3,”

Volkswagen AG, Tech. Rep., 2012.
[25] T. Aaltonen, V. Myllarniemi, M. Raatkainen, N. Makitalo, and P.

Jari, An Action-Oriented Programming Model for Pervasive

Computing in a Device Cloud, ” IEEE, 2013.

Robin Steller was born in Berlin, Germany,

in 1993. He acquired the B.S. degree and
M.S. degree in media informatics from the

Beuth University of Applied Science Berlin,

Germany, in 2012 and 2018.
 He started working as an Automation

Engineer at Thalia GmbH in 2014, creating

test automation architectures for mobile

applications. In 2016 he became a Software

Developer at the European IT Consultancy,
Berlin, working on human resource tools. In

2017 he worked at Doozer GmbH, Berlin, as a Frontend Developer. In
October 2017 he began working on his master thesis in the fields of

automation at Volkswagen Commercial Vehicles, Hanover, until May

2018. He currently works as a Frontend Developer at Aperto – An IBM
Company in Berlin. His current field of research includes automation,

testing, cloud infrastructures and frontend architectures.
 Robin Steller was a member of the Microsoft Student Partners and the

appointments committee of data science at the Beuth University of

Applied Science in Berlin, Germany.

6

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

Dr. Marek Stess Dr. Marek Stess was born in

Katowtice, Poland in 1985. In 1990 his family
and he went to Germany where he received

the Bachelor of Science degree in computer
science in 2009 from the Leibniz University

Hanover. Directly after his B. Sc. he started

the Master of Science study at the Leibniz
University Hanover in computer science. He

achieved the M. Sc. in 2013.
 After the degree M. Sc. he started his Phd

at the Volkswagen Group in the field of automated driving in

cooperation with the Institute of Systems Engineering – Real Time

Systems Group of the Leibniz University Hanover. He developed a

localization algorithm for automated vehicles by using characteristics of
the surrounding environment as different road markings and column

shaped objects. He acquired the Phd in 2016 and went to Volkswagen
Commercial Vehicles to work on industrial mobile online services.

 Dr. Marek Stess is currently responsible for the Volkswagen

Commercial Vehicles product Connect Fleet.

7

Journal of Automation and Control Engineering Vol. 7, No. 1, June 2019

©2019 Journal of Automation and Control Engineering

