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Abstract—The car industry undergoes a big change, 

triggered by modern agile methods for software 

development. New software features can be rapidly 

developed and instantly deployed. In contrast to that stands 

the long development cycle of the vehicle and its hardware. 

That hinders the development speed due to hardware 

related dependencies. Vehicle hardware requires extensive 

security measurements and procedures. Software embedded 

directly on the hardware holds many dependencies, varying 

for different car types within the same manufacturer. In the 

typical software development an Operating System (OS) 

diminishes these hardware dependencies and in the means 

of web development even OS dependencies can be resolved, 

enabling cross platform development. Therefore the 

following paper focuses on the development of a test 

automation architecture. It depicts how our architecture 

can be built to combine long term vehicle development with 

rapid agile software development and integrate them 

together. We call this DeepTesting, the complete test 

coverage of the software system with its services and 

applications. Additionally the DeepTesting architecture will 

consume real world test data to test software under nearly 

real world condition. 

 

Index Terms—automation, testing, architecture, continuous 

integration 

I. INTRODUCTION 

In the last years mobile services have an important 

factor in the automotive industry. The desires for 

autonomous driving, passenger safety and user 

entertainment have pushed the development of the 

connected car and thus the need for online services, 

communicating and exchanging data with the car over the 

air [1], [2]. 

Volkswagen Commercial Vehicles currently develops 

a mobile fleet management system called ConnectedVan 

[3]. It enables users and companies to easily monitor their 

vehicles. The user can record driver’s logbooks, fuel logs, 

statistical reports and more. 

The basic architecture behind the fleet management 

system ConnectedVan is depicted in Fig. 1. In general we 
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differ between two ways of data communication. Data 

can be collected via the Online Connectivity Unit (OCU).  

 

Figure 1. Basic Architecture of ConnectedVan 

In older car models the vehicle data is transmitted via 

the Onboard Diagnostics (OBD) and an OBD adapter. 

The OCU is equipped with a SIM card to allow 

communication Over-the-air. Starting in 2018 new 

Volkswagen cars feature the OCU by default. The OBD 

adapter is connected to the OBD and sends data to the 

ConnectedVan application running on a bluetooth paired 

device. Both, OBD and OCU, read out the signals of the 

CAN bus (Controller Area Network) in the car. The CAN 

serves as the main communication network for signals 

within a vehicle [4]. 

All data collected from the vehicle is sent to the 

Vehicle API (VAPI) for data transformation. The reason 

for data transformation originates in the large variety of 

car models, each providing different forms of object 

models for their data, especially in older car generations. 

To ensure object conformity for all backend services, the 

VAPI converts all data to a standard object model. 

After transformation the data is forwarded to the 

Connected Fleet Backend (CFB) which serves as the 

central business logic. The CFB holds all relevant 
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backend services like vehicle-service, driver-service, 

logbook-service and many more. 

Due to multiple different devices and formats like 

smart- phone, tablets and desktops, data will be further 

transformed by the Frontend API (FAPI). That way all 

business and user data is provisioned in a standardized 

way to all applications. Current applications are the 

Android, iOS and web app. 

In this context following aspects become a problem in 

terms of testing. 

 Real world condition test are either not feasible or 

require a non profitable effort. Testing the whole 

system close to the reality would require 

thousands of cars constantly performing test drives 

to supply valid testing data. To the respect of real 

time data transmission and the goal of constantly 

available data, every kind of test drive (fast, slow, 

crash, extreme weather conditions, etc) would 

have to be performed at all times. 

 Providing test coverage to the whole system is not 

trivial. The architecture holds hard dependencies 

on actual hardware (OBD, OBD adapter, OCU, 

smartphone, vehicle, CAN, CAN adapters), 

backend (APIs, micro services) and frontend 

(desktop & smartphone client). Common test 

automation architectures, explained later in the 

paper, cover isolated components of such 

architecture or can’t resolve hardware 

dependencies. 

 As a result of the previous point, embedding the 

infrastructure into a continuous integration cycle 

proves as challenging due to the variety of 

dependencies. The goal is not only to test each 

part of the architecture in isolation, but to enable a 

deep test through the whole system. That testing 

needs to be automated and integrated into the CI 

process of daily software development. 

By overcoming these problems and integrating a 

DeepTesting architecture the speed of development and 

the software quality will increase gradually. Big efforts of 

manual testing can continuously be put into the actual 

software development. 

A. What Is Test Automation? 

Test automation enables the developer to execute tests 

on intervals or events, without having to perform any 

manual task. That can be a routine running on a daily 

base or an event triggering the test process e.g. new 

commit [5]. As a definition of test automation we can 

follow the statement that “test automation is the task of 

creating a mechanically interpretable representation of a 

manual test case” [6]. Automated tests should record 

results that indicate whether the test passes or fails [5]. 

Different kinds of test types can be automated. They 

will be mentioned in the further subsection. The industry 

aims to automate as much of their test activity as possible 

to increase the test coverage and quality, but also to 

reduce costs for human resource, bug fixing, etc. The 

expected increase of the test automation market will be 

23,01% by 2022 [7]. Software testing itself makes up 

50%-60% of the total cost of software development [8], 

[9]. 

B. Types of Testing 

Automation can be applied to various types and 

dimensions of testing routines in software development. 

Following types will be supported by the final 

DeepTesting architecture. 

 Unit Test 
Unit tests check single functionalities and 

methods of a software module, verifying its 

correctness [10]. Test data is usually 

provided e.g. mocked by the developer [11]. 

Possible test designs can be both, black-box 

and white-box testing [12], [13]. 

 Integration Test 
Integration tests ensure the correct 

functionality of multiple components 

working together [14]. That could be a test, 

confirming the API’s correct 

communication with the database. Common 

integration test designs are top-down and 

bottom-up [15]. 

 Regression Test 
Goal of the regression test is the detection of 

any (re)occurring errors, caused by newly 

added code or functionalities [8]. As a result, 

the whole application must be tested 

thoroughly. Regression test is the most 

time/effort consuming type of testing and 

therefore predestined for automation [16]. 

C. Main Contribution 

Because of the complexity of vehicles, the various 

types of data that the vehicle transmits and the complex 

system landscape of mobile online services it’s important 

to create an architecture that empowers end-to-end test 

automation. The DeepTesting architecture will enable 

complete testability across multiple APIs, frontends and 

services at once. That way multiple software components 

can be integrated more easily, due to system wide test 

coverage. It also enables testing of software without any 

dependencies on the actual extensive car development 

cycle and thus increases quality and velocity of 

development. 

The paper is structured into following Sections. 

Section II analyzes the current state of the art in test 

automation architectures. Section III outlines different 

approaches for test data generation. Section IV describes 

the DeepTesting architecture resolving the problems 

displayed in Section I. The Section V displays the 

conduct of the testing process and management. Section 

VI examines the impact of the DeepTesting architecture 

on the infrastructure and development. Section VII 

concludes this paper and proposes future improvements. 

II. STATE OF THE ART 

This section depicts the currently utilized types of test 

automation and its testing domain. To the best knowledge 

of the author no publication of test automation 
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infrastructures or architectures for online services in the 

automotive industry could be retrieved for this paper. 

Publications available regarding automation in 

automotive industry exclusively considered the software 

or hardware of the vehicle itself. 

A. Netflix 

Netflix developed an architecture for automated testing 

on various types of devices. Background is the huge 

variety of gadgets Netflix is supporting with software. 

Netflix runs its SDK on millions of devices, including 

gaming consoles, TVs/STBs, tablets, smartphones, 

laptops and computers [17]. The critical concept behind 

Netflix’s setup is to reduce complexity of 

creating/running test cases to ensure high agility [17]. 

As displayed in Fig. 2 the architecture contains three 

major components: automation services, test suites and 

test devices. The automation services are a set of external 

backend services supporting the device handling, 

execution of tests and providing external features for 

testing. The connected test devices are connected to a 

Test Portability Layer (TPL) to unify device specific 

operations on an abstract layer. As a result different 

devices can be engaged via the same interface. The test 

runner supports the process of calling out to specific 

devices and services needed for a test run. The test suite 

only specifies the type of device and services. The runner 

manages the communication. 

 

Figure 2. Test architecture for GUI by Thalia [19] 

 

Figure 3. Test architecture for devices by Netflix [17] 

B. Thalia Holding 

 Thalia, Germany largest book shop franchise [18], 

created a test automation architecture for automating 

regression tests against the GUI of their android and iOS 

applications. The infrastructure consists of a CI server, 

where the build of the applications and the test routines 

are executed, see Fig. 3. The build job serves as a trigger 

for the testing routine. As soon as a build of the 

application succeeds, the artifact of the build job, e.g. 

Android Package Application (APK) or iOS App Store 

Package (IPA), is forwarded to the test job. After a 

finished test run, the results of all tests are collected and 

presented on the CI server [19]. The GUI tests are 

designed as black-box tests and run as regression-tests 

[19]. The tester only examines and tests the surface 

without regarding the underlying internal structure of 

code [20]. 

C. Summary 

All of the above listed examples for test architectures 

lack the capability of performing tests throughout the 

whole system. They focus on single parts of the overall 

system and test them in isolation, providing mock data or 

similar. The setups also neglect one important 

dependency and that is the dynamic data input which 

originates from the vehicle in our case. Also, the data 

supplied in the architectures is static and doesn’t need to 

be generated or supplied in real time when executing test 

cases. 

III. DATA 

A. Test Data Generation & Communication 

Test data is generated by creating a dump of the CAN 

bus data transmitted by the car. Data can be extracted via 

the logging interface and the CAN bus by multiple 

hardware devices. Hardware developed and currently in 

use at Volkswagen are CarGate, Car Telematics (CaTe) 

and a prototype called Car on Demand Interims Solution 

(CDIS) [21]. These devices are connected to the logging 

interface of the car and receive all data sent through the 

CAN bus. The devices differ in performance and 

transmission rate. CarGate features one low and one high 

speed CAN-Port whereas the CaTe consists of one low 

and four high speed CAN-Ports [21]. CDIS is the most 

advanced hardware containing two low and four high 

speed CAN-Ports. 

The data received through the mentioned devices can 

be accessed by connecting a Linux computer via TCP/IP 

i.e. LAN [21]. The Linux cantools candump and cangen 

are then used to extract and bundle the vehicle data into a 

logfile, the CAN dump [22]. 

Another option of test data generation is a TestRack in 

combination with CANoe ⃝  distributed by Vector. The 

TestRack consists of multiple vehicle sensor and control 

units employed in real cars. TestRack can simulate the 

behavior, on signal level, of a car. The software CANoe ⃝   

can read, manipulate and send data through the CAN of 

the TestRack. Through user inputs such as varying speed, 

car model, directions or fuel type, different test drives can 
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be performed and recorded. This however, collides with 

the idea of providing data close to the reality, but is 

applicable for early development and testing stages of the 

architecture. 

B. VirtualCarGate 

VirtualCarGate (VCG) is a Debian virtual machine 

which simulates an operating car. As illustrated in Fig. 4 

VirtualCarGate consists of various cantools, an EXLAP 

service and the generated logfiles. VCG utilizes the 

cantool canplayer to simulate the needed CAN interface 

[22], [23]. The canplayer then replays the complete 

content of the logfile until the logfile exceeds or the 

process is stopped. 

VirtualCarGate features the Extensible Lightweight 

Asynchronous Protocol (EXLAP) Service for 

communication with other EXLAP-clients. EXLAP is a 

protocol for client/server communication. EXLAP makes 

use of a simplified XML scheme. VCG transmits its data 

that is induced by the logfile and replayed by the 

canplayer, via an EXLAP service. Other EXLAP clients 

can subscribe to that service. The data will only be 

published if the value of the subscribed property has 

changed since its last publication [24]. 

 

 

Figure 4. Test data simulation and distribution 

IV. DEEP TESTING ARCHITECTURE 

This section outlines the DeepTesting architecture, 

depicted in Fig. 5, with its single components and 

employed technologies. The architecture consists of the 

VirtualCarGate for data supply, the Playback Server to 

trigger the test runs and the CI Server which stores and 

runs the test scripts. The architecture envelopes the 

ConnectedVan system mentioned in Section I and seen 

on Fig. 1. 

A. Playback Server 

The Playback Server will serve as the data and test 

management center. It should enable the user (developer, 

QA engineer) to select a specific vehicle or desired test 

drive and a set of tests that should be executed. The 

playback server will then start a VirtualCarGate instance 

to run the simulation process and channels the data to the 

specific test set. If the data stream is provided, the 

PlayBack server will then trigger the test job to run on the 

CI server. If the test job is finished the playback server 

will shut down the VirtualCarGate instance. The set of 

tests selected on the playback server defines which parts 

of the overall system will be needed for testing. That 

could be a set running against a single specific service or 

API while the GUI test job verifies the correctness of that 

supplied data on the frontend. 

The Playback Server also gives feedback about the test 

result to the user. The feedback consists of simple data 

whether the test fails or passes. Additionally the occurred 

error is published and its location within the system. 

 

 

Figure 5. Deep Testing Architecture 

B. CI Server 

The CI Server will contain the test jobs running against 

the APIs, services and applications. Trigger can be either 

the Playback Server, a specific event or a time interval for 

the CI server to start the process. The Playback Server 

provides the CI server, i.e. the test jobs, with the 

connection information for the started VCG instance, 

consisting of URL and port. The test job uses the URL 

and port to instantiate an EXLAP client to establish the 

data stream to the VCG instance and pulls the CAN data. 

When the connection and stream is established, the actual 

test script within the test job will be executed. The 

services and APIs will be running as test instances on 

other servers. These need to be accessible for the test jobs. 

For early development and setup, mocked service 

instances can be useful. 

C. Devices 

Devices will be connected to the CI server or any 

available nodes. When connecting mobile devices the 

completion of all verification steps must be done to 

enable communication and debugging [19]. For testing 

purpose emulators can be used to speed up development 
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of the infrastructure. Another alternative is a device farm 

or device cloud where test devices and hardware are 

provided as a service [25]. 

V. RUNNING SYSTEM 

This section explains the methodology of initiating and 

operating the test system. For illustration, the process of  

an actual test case will be examined. 

A. Test Setup 

The example test case is kept simple. The user logs in, 

starts a car trip, records the logbook and ends the trip. We 

want to test the correctness of the VAPI data and perform 

an UI test on the android and web application. The test 

data used for the test case originates from a 30 minutes 

drive with a Volkswagen Passat GTE. The extracted 

logfile is placed within the VCG for playback. 

On the CI Server a test job has to be created. The build 

jobs need to employ a build script that checks out the 

repository containing the test code and triggers the test 

script builds and executions. The CI Server must expose a 

REST API or other interface to enable communication to 

the Playback Server. The Playback Server will then use 

the REST interface to trigger test runs. The VCG will be 

running on a typical web service host. 

B. API & Service Test Script 

All API and service test scripts for VAPI, CFB and 

FAPI follow the same pattern of verifying incoming data 

and checking the output data. To illustrate the process the 

VAPI test is examined. The VAPI test script runs during 

the complete test run. The script checks if the data sent by 

the VCG and the mobile app are received and 

transformed by the VAPI as expected in conjunction with 

the test drive. As seen in Fig. 6 the data will be verified 

before and after the transformation. Due to the fact that 

the exact data transmitted by the test drive is known, its 

correctness can be verified. 

 

Figure 6. API Test 

C. Mobile Test Script 

The mobile UI test script is written in Java, utilizing 

the espresso framework for android. The mobile 

application is tested throughout the complete vehicle test 

drive. The test job will perform following steps. 

D. Web Test Script 

The UI test script for the web application uses the 

selenium framework. The web app will be tested after the 

test drive has been ended and recorded. The web app acts 

as an information portal, where all recorded trips to 

certain vehicles or drivers can be reviewed. Thus no live 

interaction occurs. These test steps need to performed. 

VI. EXPERIMENTS AND RESULTS 

For the applicable use cases of the product 

ConnectedVan test drives have been recorded and linked 

to specific test cases. In our first steps we were able to 

generate test scripts for creating a driver’s logbook, 

taking a business trip, creating a driver’s entry and the 

edge case of an empty drive without data. The first use 

case was examined in detail in Section V and was run 

1119 times in total on a CI Server. 

632 runs were successful, 312 failed and 175 contained 

build error, as seen in Fig. 7. Build error means that the 

test job itself was faulty and contained mistakes, which 

happened in early development stages. For the 312 failed 

build several factor have to be considered. The product is 

still in development, therefore the frontends and APIs 

were target of major changes. Anytime that happened, the 

tests had to be adjusted as well. If not, the test failed. 

In total 56 unique bugs were found by the 

infrastructure, which are not related to any API or 

frontend changes. The major part of the bugs consisted of 

frontend bugs, which included wrong wordings, missing 

fields or buttons and responsiveness. In terms of bugs 

concerning the APIs and backends, several bugs were 

located with missing data fields or unexpected values. 

 

 Figure 7. Test Statistics 

VII. CONCLUSIONS 

With the DeepTesting Architecture we were able to 

record and store test drives. We can launch them in an 

automated way in conjunction with the corresponding test 

cases triggered by new commits of the developers. 

A. Positive 

The architecture offers end-to-end testing through all 

components of our software system from test drive 

generation over APIs and services to the UI. We 

successfully integrated use cases to be tested by the 

architecture throughout all components. By splitting the 

architecture into smaller components like the VCG, 

Playback Server and the CI Server scaling becomes more 
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manageable. Multiple VCG instances can run at any time, 

while having multiple test job instances running on the CI 

server or CI slave. The Playback Server only has to 

trigger and forward the information for the test jobs. For 

large scale UI testing however, a device farm or device 

cloud would be necessary. 

B. Negative 

The system needs a tremendous effort of developer 

operations to enable communication and data flow 

through all parts of the application. Communication must 

also guarantee stability and integrity. As various 

components might be added to the overall system, 

adjustments have to be made for the test automation flow. 

This outlines another effort which accompanies the 

architecture, the effort of maintenance. Maintenance is a 

critical factor in test automation for long term 

development. If adjustments at the architecture become 

more time consuming than the actual testing, the 

architecture becomes obsolete. 

Another field of improvement, though not directly 

connected to the architecture itself is the generation of 

test data. If a large variety of test drives are to be 

available, the actual test drives have to be performed with 

a real car in the real world. For edge cases like car 

crashes or similar – safety, time and resources are 

predominant factors to be considered. 

Executing a test run takes up the exact duration of the 

linked test drive logfile. This can cause complications 

when the whole system needs to be tested quickly, in case 

of time pressure. However there are current methods and 

technologies to fast forward the simulation process which 

will be implemented in the future. 

C. Future 

In the future more test cases will be examined and 

executed to improve the stability and integrity of the 

architecture. A possible improvement will be the usage of 

device farms to enable a larger scale of test runs. Also the 

impact of the architecture on the resulting code quality, 

refactoring effort and software stability will be analyzed, 

thus only being measurable over a longer time frame. 

Furthermore a GUI will be created that enables non 

technical users to create test cases. Single fragments of 

tests can be put together to create a test suite. 
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