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Abstract—This paper addresses the challenge of mapping 

the paths of particles originating from a chemical source 

using interpolation and extrapolation methods. Odor 

localization is the problem of identifying the source of an 

odor or another volatile chemical in an uncontrolled 

environment. Most localization methods require following 

an odor plume along its path by a mobile detector, that is 

time consuming and difficult in a cluttered environment. In 

this paper, physically separated multiple sensors and the 

dynamical behavior of fluids are used to predict the airflow 

pattern. A model of a particle path using an interpolation 

and extrapolation method, a framework of the reasoning 

systems, and results of odor source location process are 

presented. The method also demonstrates that an 

interpolation and extrapolation approach can be used to 

assist the odor localization search and shows that it is 

successful in reasoning about the surroundings in 

unstructured environments. 

 

Index Term—odor source localization, odor distribution 

map, sensor networks 

 

I. INTRODUCTION 

The detection of the airborne chemicals presents a 

different type of challenge than the more traditional 

detection efforts, such as the visual-based detection or 

propagating signal detections [1]-[3]. The chemicals that 

are airborne tend to drift in various directions due to wind, 

up-draft, and obstacles. As a result, isolation of the source 

of such particles becomes considerable difficult and 

dependent on topography and environment. There has 

been some previous research on the detection and 

modeling of airborne particles, plume location and 

tracking [4]. However, most of such research is based on 

sensor information on moving robots that are guided by 

the detectors [5]. These types of sensing robots are 

assumed to move about freely following the trail of a 

chemical signature, while they’re continuously sensing 

for the particles [6], [7]. Both of these assumptions are 

invalid in inaccessible and hostile environments with 

sensors that can either function once or need along 

rejuvenation time cycles. In our approach to the problem 

of chemical particle detection and source location, we use 

a small number of chemical sensors that are sparsely 

scattered around an area only known by a two-

dimensional map. In real-world problems, we anticipate 
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that a small unmanned aircraft would drop some of these 

sensors on the area of interest while taking some aerial 

pictures. We assume that the sensor data along with the 

map are transmitted to a nearby location perhaps to a 

vehicle that will be travelling through the area of interest. 

We would like to use the maximum available information 

content to generate first a model of the chemical particle 

distribution, and then locate the source of the particles 

based on the model. 

II. PARTICLE PATHS MAPPING AND ODOR DISPERSAL 

A. Particle Path Algorithms Using Interpolation and 

Extrapolation 

Using the sensors that can collect the sensors position, 

wind velocity, chemical concentration, we can determine 

the particle paths that describe the propagation in the 

environment. This map is a prerequisite for the detection 

the odor source. 

In this paper, we start with the interpolation of two 

nodes points 
0 0( , )x y  and

1 1( , )x y , where the points are 

the locations of two sensors with odor particle values of 

0s and 1s , respectively. Since a direct interpolation of a 

path between the two points would be inconsistent with 

the odor propagation and the air flow, we generate two 

more localizations, a propagation parameter “t” where

0 1t  , and consistent interpolation functions 
xH and

yH , such that 

( ( ), ( )) ( ( ), ( )),x yx t y t H t H t                        (1) 

where 0 (0),xx H  1 (1),xx H  
0 (0),yy H  

1 (1).yy H  

In this approximation, we use Hermite polynomials. In 

Equation (1), we match the boundary values of the 

location; however we also need to match the velocities

0 01 1

, , , .
x yx y

and
t t t t

  
   

 

From the sensor data, we can only collect the 

derivatives of y with respect to t, but we need the 

derivatives of x and y with respect to t. However, these 

derivatives aren’t too hard to determine from using the 

identity 
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Consequentially, we chose 
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We, then, proceed to construct the two Hermite 

polynomials in the usual way, such that 
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where
,n jL denotes the jth Lagrange coefficient of the 

2 1n is the order polynomial.  

Similarly, we have 

2 2

0 0

2 2

1 1

( ) (1 2 )( 1) ( 1) ( )

(3 2 ) ( 1) ( )

yH t t t y t t y

t t y t t y
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          (5) 

As a test case, we consider a three sensor configuration 

system as in Fig. 1. In the figure, the thick black lines are 

the boundaries of the room, the red dots are the sensor 

locations, and the red dotted lines designate the border of 

the boundary zone. 

 

Figure 1.  The location of three sensors in a square enclosure. 

Some chemical sensors are designed to detect simply 

the existence of chemical particles and trigger a positive 

result when the concentration amounts are above a preset 

threshold level. In our design, instead of the threshold, we 

make use of the actual concentration levels that are 

detected. This approach along with some other data 

enables us to model the flow of the particles and the 

location of the source. Each sensor provides the co-

located sensory information of the airflow information 

that is obtained not by an additional sensory device but 

by an off-centered multi-orifice detection hardware 

configuration. In our derivations, we assume that the 

differential information is perpendicular to the wind 

direction, but we can accommodate any non-zero known 

angular orientation simply by a coordinate transformation. 

Designating the location of the sensors by (x, y), we 

represent the flow of air by (δx, δy). Similarly, we 

represent the sensed particle concentration by s and the 

concentration gradient by δs. 

Once we obtain the sensory information, we start with 

an approximation of the particle path. We configure paths 

that go through the sensor locations, such that the paths 

satisfy the locations as well as the differentials. This 

approach leads to a parametric cubic-polynomial 

representation of the path in terms of the variable t. We 

use the cubic Hermite splines with the end point 

differentials weighted three times, such that 
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where the parametric curve starts at one sensor location at 

(x(0), y(0)) and ends at the other sensor location at (x(1), 

y(1)) as t goes from 0 to 1. 

 

Figure 2.  Consistent air-borne particle paths between two sensors. 

We compute the expected concentration values along 

the computed path and compare them with the actual 

sensed concentration values Based on the errors and the 

measured gradient concentrations; we determine new 

locations perpendicular to the initial paths, where the 

expected and the sensed concentration values match. We, 

then, compute the corrected paths going through one of 

the sensors and the new location. When we repeat this 

process forwards from one sensor and backwards from 

another, we end up getting two consistent paths with 

correct concentration values. We will refer to these paths 

as primary paths. Fig. 2 shows the two paths generated by 

matching the expected and the sensed concentration 

values. 
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Figure 3.  Primary and secondary air-borne particle paths going 
through two sensors. 

In the next step of the extrapolation, we complete the 

particle propagation paths by generating secondary paths 

for the whole area. The secondary paths are between two 

adjacent primary paths. To generate these secondary 

paths, we determine the perpendicular lines to the 

tangents of the paths, and use the intersection points of 

these perpendicular lines. We assign the average values 

of the particle concentrations and the concentration 

gradients on the secondary paths. For the paths that are on 

the external regions of the primary paths, we use 

perpendicular normal extensions, but we extrapolate the 

particle concentrations and the concentration gradients. 

Fig. 3 shows the path extensions as well as the whole 

room coverage with primary and the secondary paths. 

B. Chemical Particle Distribution by the Continuous 

Releasing 

Particle-laden flow refers to a class of two phase fluid 

flow, in which one of the phase is continuously connected 

(referred to as the continuous or carrier phase) and the 

other phase is made of small, immiscible and typically 

dilute particles (referred to as the dispersed or particle 

phase) [8]-[10]. The problem of detecting odor source is 

typically about the particle-laden flow. The chemical 

particle is the dispersed phase, and the air is the carrier 

phase.   

If the mass fraction of the dispersed phase is small, the 

one-way coupling between the two phases is a reasonable 

assumption; that is, the dynamics of particle phases are 

affected by the carrier phase, but the reverse is not the 

case. In our case, the particles are very small and occur in 

low concentrations; hence the dynamics are governed by 

the carrier phase. The particle phase is typically treated in 

a Gaussian distribution along the flow direction, such that  

2[ ( ) ]
2( , )

2

s

u
d x

K

s

q
C x y e

Kd

 

                    (7) 
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C is the concentration, q is the emitted rate, u is the 

wind speed, K is turbulent diffusion coefficient,   is the 

angle from the x-axis to the upwind direction, and the 

subscript “s” denotes the odor source. 

III. REASONING SYSTEM AND ALGORITHM 

We use a reasoning system that uses the airflow model 

effectively to reason about the odor dispersal. It’s able to 

navigate the sensor around the environment to gather 

relevant information and then successfully predict the 

region from which the odor originated, without moving 

the sensor. 

The detection of odor source is finding the highest 

concentration in the considered area, although we have 

limited number of sensors in the this area. Each sensor 

can provide some information that contributes the 

decision about the location of the source.  

Definition 1: When the sensor’s location is ( , )n nx y ,

n 1, , N and the odor source location is ( , )s sx y , we 

use 
2

( , ) ( , )n n s sx y x y to indicate the distance. Then the 

closest two sensors from the minimization 

(
2

arg min ( , ) - ( , )n n s s
n

x y x y ) to the odor source, are 

called the critical sensors.  

Definition 2: If a critical sensor is on the upstream of 

the chemical source, we call it the upstream critical 

sensor. Otherwise, it’s called the downstream critical 

sensor. 

Through these definitions, the problem of odor source 

detection is transformed to the problem of detecting 

upstream critical and downstream critical sensors. The 

odor source is located in the region between the two 

critical sensors. 

The detection process is based on the sensitivity of the 

interpolation with respect to individual sensors. In a 

system with N sensors, we first generate a set of particle 

paths based on all of the sensors. Then, we successively 

reduce an individual sensor data one at a time and 

generate another set of particle paths. The differences 

between these two sets of particle paths provide us the 

necessary information to identify and locate the source.  

 

Figure 4.  The particle path map using 4 sensors. 

To demonstrate the reasoning process, we assume 

there are 4 sensors in the room, as shown in Fig. 4. Based 

on the method described in Section 2, we conclude that 

the airflow is in from left to right direction. In other 

words, the particle paths go through Sensor 1 first, then 

Sensor 2 and 3, and lastly Sensor 4.  
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Figure 5.  The chemical concentration on the particle path. 

As part of the method, we can approximate the particle 

paths, the position, the velocity, and the concentration of 

every point on the particle paths. Fig. 5 shows the 

concentration distribution along the particle path for this 

case. The horizontal axis denotes the motion distance of 

the particles along the path, and the vertical axis shows 

the value of the chemical concentrations. The odor source 

is located between Sensor 1 and Sensor 2. In downstream 

flow, the chemical concentration is decayed smoothly 

with a small rate, but in the upstream, the chemical 

concentration is decayed drastically, because the air flow 

blows most of particles downstream. 

Case 1: (
0nS S  or

0nS S case) After removing one 

sensor, we get a new particle and a new chemical 

dispersal map. If the new chemical concentration 
n

S on at 

the location of the removed sensor is higher (or lower) 

than the actual valve
0

S , then we conclude that the 

removed sensor is upstream (or downstream) of the odor 

source. In this case, the removed sensor is called critical 

sensor. 

Case 2: (
0nS S  case) After removing one sensor, we 

get a new particle and a new chemical dispersal map. If 

the new chemical concentration (
n

S ) at the location of 

the removed sensor point is close to the actual valve (
0

S ), 

then we conclude that the removed sensor is far from the 

odor source, and this sensor is not a critical sensor.  

In the example case, when we remove \ Sensor 1, the 

updated chemical concentration at the location of Sensor 

1 is higher than the original value. We observe this result 

in Fig. 6. As a result, we conclude that Sensor 1 is an 

upstream critical sensor. Applying same reasoning on 

Sensor 2, we observe that the chemical concentration at 

the location of Sensor 2 is lower than the original value, 

as seen in Fig. 7. As a result, we conclude that Sensor 2 is 

a downstream critical sensor. Similarly applying same 

method on Sensor 3 and Sensor 4, we observe that the 

chemical concentrations at the locations of Sensor 3 and 

Sensor 4 are almost equal to the original values. 

Consequentially, we conclude that Sensor 3 and Sensor 4 

are not close to the source and they are not critical 

sensors. From the above analysis, we conclude that the 

odor source should be located between Sensor 1 and 

Sensor 2. 

The accuracy in the odor source detection is directly 

related to the amount of sensors and the placement of the 

sensors. Since the concentration on an upstream of the 

odor source cannot decrease more than a know rate, we 

get a large error, when the concentration on the upstream 

critical sensor is higher than the concentration on the 

downstream critical sensor. If the value of the upstream 

critical sensor is larger than the value of the downstream 

critical sensor, then we conclude that the source is located 

further upstream of the upstream critical sensor. As a 

result, we can choose a wrong region as the odor source 

in such circumstances. 

In the above analysis, we concluded that the source is 

in the region between Sensor 1 and Sensor 2 as shown in 

Fig. 8. In most cases, we need to improve the detection 

by reducing the region. To achieve this reduction, we 

utilize the secondary paths as described in the previous 

section.  

Similar to the primary path approach, we generate 
consistent chemical concentration at the points on the 
perpendicular lines to the paths going through the critical 

sensors. We, then, compare these concentrations and 
indentify the two paths with the highest concentrations as 
the critical paths. Fig. 9 shows how the region that the 
odor source is located is narrowed using the secondary 
path analysis.  

 

Figure 6.  Concentration curves using all sensors and using 3 sensors. 

 

Figure 7.  Concentration curves using all sensors and using 3 sensors. 

 

Figure 8.  The region selected by critical sensors. 
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Figure 9.  The most-likely region selected by critical sensors. 

IV. EXPERIMENTAL EVALUATIONS 

In this section, we apply the method presented on the 

previous section to a real world problem. First, we 

obtained a real map of Missouri University of Science 

and Technology campus. Second, we use an edge 

detection technology to process the map to eliminate all 

the features except the main buildings. Fig. 10 shows the 

real map after the edge detection process. Third, we place 

8 sensors on the surveyed region and generated the 

primary paths as shown in Fig. 11. 

 

Figure 10.  A real map of Missouri University of Science and 

Technology processed by edge detection method. 

 

Figure 11.  A particle path map of Missouri University of Science and 

Technology. 

As we explained in the previous sections, we removed 

the data of every sensor one at a time and determined the 

critical sensors. Based on the critical sensor data and the 

secondary path analysis, we obtained the region for the 

source of the odor particles as shown in Fig. 12. 

For comparison purposes, we also used fluid dynamics 

simulation to study the airflow characteristics in an 

environment. We used the COMSOL software that is 

used to analyze complex flow of fluid dynamics. We set 

the wind to flow from southwest to northeast and the 

configuration is set to be the same. The COMSOL 

software utilizes a finite element method that incorporates 

the fluid dynamics of the air flow. Fig. 13 shows the 

steam lines of airflow as produced by the COMSOL 

software. Comparing the results, we verify that the most-

probable region that contains the odor source determined 

by the proposed method is consistent with the COMSOL 

software results. 

 

Figure 12.  The most-likely region contains odor source in the real map. 

 

Figure 13.  Air-borne particle paths going through ten sensors in a real 
map processed by COMSOL. 

When we compare the particle flow paths in Fig. 12 

and the air flow paths in Fig. 13, we verify the close 

consistency of the presented interpolation method, even 

though the interpolation method requires and uses at least 

a couple of magnitude less computational and storage 

resources than COMSOL software.  

V. CONCLUSIONS 

There are many useful and humanitarian reasons to 

locate the source of a chemical odor source. Generally, 

the majority of work in this area uses reactive control 

schemes that track an odor plume along its entire length. 
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This type of an approach is slow and difficult in cluttered 

environments. In this paper, we presented an interpolation 

and extrapolation method to model odor generating 

particle flow in an environment with distributed sensors. 

We used particle paths of the model to narrow down the 

location of the odor source. The presented method has the 

advantage of utilizing at least couple of magnitude less 

resource than a finite element based commercial software 

analysis.  
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