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Abstract—Switched systems have numerous applications in 

control of real systems as mechanical systems, automotive 

industry, aircraft and air traffic control, switching power 

converters, and many other fields. Optimal control 

problems of  switching systems  require the decision of both 

the optimal solutions and switching sequences. The 

stochastic optimal control problem of linear switching 

systems with quadratic cost function is investigated. The 

contribution of this paper is to present a necessary and 

sufficient condition of optimality for considered switching 

systems. 
 

Index Terms—condition of optimality, quadratic function, 

optimal control, switching system 

 

I. INTRODUCTION 

The optimal control problem for linear systems was 

solved, as well as the filtering one, in 1960s by Kalman 

[1], but  there exist a lot of  invariant and non-invariant 

linear systems with still open optimal control problem. 

There has been an enormously rich theory on LQ control, 

deterministic and stochastic alike (see [2]-[9]). 

For the deterministic Riccati equation was essentially 

solved by Wonham [10] by applying Bellman’s principle 

of quasilinearizatin (see [11]). 

Bismut [12] performed a detailed analysis for 

stochastic LQ control with random coefficients. But 

associated  Riccati equation in this case is a highly 

nonlinear backward stochastic differential equations. The 

existence and uniqueness of solution for such class of 

equations was investigated in [12].  Switching systems 

consist of several subsystems and a switching law 

indicating the active subsystem at each time instantly. For 

general theory of stochastic switching systems it is 

referred  to [13] . Theoretical results  and applications of  

stochastic switching systems were developed in [14]-[18]. 

Deterministic and  stochastic optimal control problems of 

switching systems are actual at present [19]-[22].  

This article is concerned with optimal control problem 

of stochastic linear  switching systems with quadratic cost 

functional.  

The rest of paper is organized as follows. The next 

section formulates the main problem, presents some 

concepts and assumptions. The necessary and sufficient 
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condition of optimality for stochastic linear  switching 

systems is obtained in section III.  In section IV, the 

unique optimal control is derived in terms of state 

feedback via the solution of Riccati equation. The paper 

is concluded in section V with some possible 

developments and enlargements. 

II. NOTATIONS AND PROBLEM FORMULATION  

In this section we fix notation and  definition used 

throughout this paper. Let N be some positive 

constant,
nR  denotes  the n - dimensional  real vector 

space, .  denotes the Euclidean norm and ,  denotes 

scalar product in 
nR .  E represents expectation ; the set 

of integer numbers 1,…,s is denoted by s,1 ; ' (the prime) 

denotes derivative; * is the matrix transposition operation.  

Let s

ttt www ,...,, 21 are independent Wiener processes, 

which generate filtrations sltttwF ll

l

q

l

t ,1),,( 1   ; 

slPF l ,1),,,(   be a probability spaces with 

corresponding filtrations    ,, 1 ll

l

t tttF  .  n

F
RbaL l ;,2

 

denotes  the space of all predictable processes  

    txtx ,  such that:   

b

a

t dtxE
2

 . 
nmR 

 is 

the space of all linear transformations from 
mR  to 

nR .   

Let ll m

l

n

l RQRO  ,  be open sets;  T,0  be a 

finite interval and  Tttt s  ...0 10
. Following 

notation is used unless specified otherwise: 

 sttt ,...,, 10t ,  suuu ,...,, 21u ,  sxxx ,...,, 21x . 

Consider following linear controlled system with variable 

structure: 

 
   

  slttt

dwuDxCdtuBxAdx

ll

l

t

l

t

l

t

l

t

l

tt

l

t

l

t

l

t

l

t

,1,,1 





  (1) 

1,1,1  slKxx l

t

l

t

l

t

l

t llll
;   0

1

0
xxt           (2) 

      mllm

llF

lll

t RUtuRttLuUu   ,|;,, 1

2
   (3) 
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where rlU l ,1,   are non-empty bounded sets. The 

elements of 
lU   are called the admissible controls. The 

problem is concluded to find the optimal solution  

 ss uuuxxx ,...,,,,...,, 2121  and  the switching sequence 

sttt ,...,, 21
 which  minimize the cost functional : 

   












  




s

l

l

t

l

t

l

t

l

t

l

t

l

t

t

t

s

T

s

T dtuuNxxMxGxEuJ
l

l
1

,,,

1

  (4) 

Elements of matrices  llllll NMCBA ,,,,,  and 

vectors slK l ,1,  are continuous, bounded 

functions. G , slN l ,1,   are a positively semi-defined 

matrices , and  slN l ,1,   are a positively defined 

matrices.  

Let  sUUUU  ...21 , and  consider the sets 




 
i

j

j
i

j

j

i

i UOA
11

1  with the elements 

),...,,,...,,,...,( 11

0 1

ii

tti

i uuxxtt
i

 . 

Definition 1. The set of functions   ,, lll

t txx   

  slttt ll ,1,,1  
 is said to be a solution of the equation 

(1) with variable structure which correspond to an 

element s

s  , if the function l

l

t Ox   satisfies the 

conditions (2), while on the interval  ll tt ,1
 it is 

absolutely continuous a.c. (almost certainly) and satisfies 

the equation (1) a.e.(almost everywhere). 

Definition 2. The element s

s A  is said to be 

admissible if the pairs     sltttux ll

l

t

l

t ,1,,,, 1  
   are 

the solutions of system (1)-(3).  
0

sA indicates the set of admissible elements. 

Definition 3.  The element 
0~
s

s A , is said to be an 

optimal solution of problem (1)-(4) if  there exist  

admissible controls    sltttu ll

l

t ,...1,,,~
1  

 and  

corresponding solutions of system (1)-(2) such that   

pairs   slux l

t

l

t ,1,~,~    minimize the functional (4). 

III. OPTIMAL CONTROL PROBLEM 

Necessary and sufficient conditions satisfied by an 

optimal solution , play an important role for analysis  of 

control problems. In this section optimality condition for 

stochastic control problem of linear switching systems is 

obtained. 

Theorem. The necessary and sufficient conditions for 

an element ),...,,,...,,,..,( 11

0

ss

ttr

s uuxxtt  to be an optimal 

solution of problem (1)-(4) if and only if  : 

a) there exist random processes 

);,(),( 1

2 l
l

n

llF

l

t

l

t RttL   );,( 1

2 ll
l

xnn

llF
RttL   which are 

the solutions of the following adjoint equations: 

 

 
 




























;

1,1,

,1,,

,-

1

1

s

T

s

T

l

t

l

t

l

t

ll

t

l

t

l

tt

l

t

l

t

l

t

l

t

l

t

Gx

sl

slttt

dwdtxMCAd

lll







  (5) 

b) the candidate optimal controls  
l

tu  are defined by:   

   sltttDBuN ll

l

t

l

t

l

t

l

t

l

t

l

t ,1,,, 1

*  



 ,          (6) 

c) the transversality conditions  

      1,1,0)( ''1  slKx l

t

l

t

l

t

l

t llll
            (7) 

hold. 

Proof.   Let  
l

tu  and 
l

tu , sl ,1  be some admissible 

controls; call the vectors 
l

t

l

t

l

t uuu  be an admissible 

increments of the controls
l

tu . By (1)-(2), the trajectories 

l

t

l

t xx , , sl ,1   correspond to the controls 
l

t

l

t uu , . 

Consider two sequence laws  Tttt s ,...,,0 121 t  and 

 Tttt s ,...,,0 121 t . Increment of cost functional (4) 

along admissible control  s

ttt uuu ,..., 21u   looks like: 

  

   








s

l

t

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

s

T

s

T

s

T

l

l

dtuuNxxxM

xxGxEJ

1
1

u-,-,

-,, uuu

           (8) 

Taking into consideration (1)-(2) we obtain: 

      
      




















l

t

l

t

l

t

l

t

l

t

l

t

l

t
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l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

lllllll
xxxxx

tttdwuuDxxC

dtuuBxxAxxd

111

1

-

,,

-

      (9) 

According to Ito’s formula for each   slttt ll ,1,,1  
: 

     
    dttuuDtxxC

txxdtxxdtxxd

l

l

t

l

t

l

tl

l

t

l

t

l

t

l

t

l

l

t

l

t

l

tl

l

t

l

t

l

tl

l

t

l

t

l

t





,

,,,




 

Integrating this equality and taking expectation of both 

side into account (9) as follows: 

   

 

 

















 

l

l

l

l
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t

t
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l

t

l

t

l

t

l

t

t

t

l

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

l

t

l

t

l
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l

t

l

t

l

t

dttuuDBE

txxCAd

txxEtxxE

1

1

111

,

,E

,, 1







    

Due to this equality the expression (8) can be rewritten 

as: 

   

     













s

l

t

t

l

l
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l
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l

t

l
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l
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l

t

l

t

l

t

s

l

l

l

t

l

t

l

t

s

T

s

T

s

T

l

l

lll

dttuuNtxxxME

txxExxGxEJ

1

1

1

u-,-,

-,-,, uuu
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    





s

1l
1

-,E
l

l

t

t

l

l

t

l

t

l

t

l

t

l

t

l

t

l

t txxCAd   

  







s

l

t

t

l

l

t

l

t

l

t

l

t

l

t

l

t

l

l

dttuuDBE
1

1

,           (10) 

The stochastic processes   
l

t ,  at the points 
sttt ,...,, 21
 

can be defined as follows:   

1,1,1   sll

t

l

t

l

t lll
   and  

s

T

s

T Gx  

Further using  equation (5) we get: 

  

 

  










s

l

t

t

l

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

l

dttuuDBuNE

J

1
1

,

,



uuu

   (11) 

It is well known that the necessary and sufficient 

condition of optimality for convex functional given by as:                                           

  0 uJ .The validity of (6)-(8), follows from the 

relation (11). Finally, according to the independence of 

increments 
l

tx ,
l

tu
lt , sufficiency is proceed from 

expression (10).  

IV. RICCATI EQUATIONS  

This section is devoted to  the the Riccati equation for 

the possible feedback regulator design of  stochastic LQ 

problem of switching systems.  

                slxpd l

t

l

t

l

t ,1,  , a.c.                  (12) 

At the end are received the differential equations, 

which are a stochastic analogue of the Riccati equations, 

for determi- nation functions slpl

t ,1,  . 

We will search for slpl

t ,1,   in the following form: 

sldwdtdp t

l

t

l

t

l

t ,1,  

According to formula Ito have: 

  dtuDxCdxpxdpd l

t

l

tt

l

ttt

l

tt

l

tt   . 

Using (1) and (5) have: 

    

 

    ].
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dtuDxCdwuDxCp

dtuBpdtxApdwxdtx

dwdtxMCA
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l
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l

t

l

t













    (13) 

For sll

t ,1,   we are having next form: 

   ll

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t

l

t tttuDpxCpx ,, 1     (14) 

By means of simple transformations into account (14) 

expression (13) can be rewritten as follows : 
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Considering (12) in expression (6) optimal control can 

be defined explicitly for each sl ,1  and  ll ttt ,1 : 
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following Riccati equations:  
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
 

V. CONCLUSION 

This work deals with description the real phenomena 

with non-invariant nature and investigation of optimal 

control problems of such linear systems.The results can 

be used in various optimization problems of biology, 

physics, engineering, economics, and have a lot of life 

science, financial market applications [23-27]. The LQ 

problem considered in this manuscript can be viewed as 

development of the problems formulated in [17], 21], 

[28]. 
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