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Abstract—In this paper, we propose a new approach to 

coverage control problem by using adaptive coordination 

and power aware control laws. Nonholonomic mobile nodes 

position themselves sub-optimally according to a time-

varying density function using Centroidal Voronoi 

Tesellations. The Lyapunov stability analysis of the adaptive 

and decentralized approach is given. A linear consensus 

protocol is used to establish synchronization among the 

mobile nodes. Also, repulsive forces prevent nodes from 

collision. Simulation results show that by using power aware 

control laws, energy consumption of the nodes can be 

reduced.  

 

Index Terms—power aware, coverage control, adaptive, 

consensus, nonholonomic, coordination 

 

I. INTRODUCTION 

Multi agent coordination problems are challenging 

topics studied intensively in the past years. In many 

applications, using more than one agent is necessary to 

achieve better results. This is the case in multi agent 

coverage problem. Distributed coverage control topic has 

its importance in mobile sensor networks. It uses 

locational optimization to place the sensors in optimal 

way in order to improve coverage performance. 

In literature, there are various examples of placing 

sensors in an environment using locational optimization. 

Luna et. al [1], propose an adaptive and decentralized 

version of coverage control approach which uses 

nonholonomic mobile sensors and time varying density 

functions. In [2], a distributed control law and 

coordination algorithm is proposed which uses location 

dependent sensing models. Another example [3] proposes 

an adaptive and distributed approach which uses gradient 

descent algorithms to ensure optimal coverage and 

sensing policies.  

In [4], a Local Voronoi Decomposition algorithm is 

proposed which accomplishes a robust and online task 

allocation. The result of algorithm is verified in the 

problem of exploration of an unknown environment. 

Okabe et. al [5] investigates eight types of locational 

optimization problems that can be solved by using 

Voronoi diagrams. The solution of these problems may 

involve different types of Voronoi diagrams. Another 

work in [6] considers a mobile sensor network which is 

capable of self-deployment. A potential field based 
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approach is proposed which enables the nodes to be 

repelled by other nodes and obstacles. In [7], distributed 

optimal control problems for interacting subsystems are 

solved by using a distributed horizon control 

implementation. The implementation is used in multi-

vehicle formation stabilization. 

Another approach is to use probabilistic models to 

achieve optimal configuration. In [8], anisotropic sensors 

are defined by a probabilistic model and distributed 

control algorithms are proposed which maximize joint 

detection probabilities. Another distributed coverage 

approach [9] uses mobile sensors with limited range 

defined by a probabilistic model. It also uses joint 

detection probabilities and communication cost is 

integrated into coverage control problem. 

There are also some examples which take energy 

consumption into account. Gusrialdi et al. [10], present a 

standard distributed coverage control algorithm combined 

with leader-following algorithm which maintains optimal 

energy utilization. Kwok et al. [11] uses power-aware 

coverage algorithms to adjust the energy consumption 

over the sensor network with two modified Llyod-like 

algorithms. In [12], an approach for agents with limited 

power to move considering power constraints is presented. 

Several types of Locational Optimization Functions are 

used and objective functions take global energy and 

different coverage criteria into account. Another example 

[13] discusses an energy efficient deployment algorithm 

based on Voronoi diagrams. The performance of the 

proposed algorithm is tested in terms of different criteria. 

There are several contributions of this paper to the 

literature. A power-aware control law is proposed which 

reduces the energy consumption of the nodes optimally. 

To the best of author’s knowledge, this is the first work 

that uses adaptive coverage with power-aware control 

laws. Also, repulsive forces are used to prevent nodes 

from collision.  

The paper is organized as follows: In Section II, 

mathematical background of the optimal coverage control 

problem is given. In Section III, the adaptive coverage 

control with integrator dynamics is mentioned. Section 

IV describes the application of the adaptive coverage 

control for nonholonomic sensors. In Section V, we 

present the energy consumption model and the power-

aware adaptive coverage control laws. In Section VI, the 

Lyapunov stability analysis of the power-aware adaptive 

coverage control law is presented. Section VII presents 
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the simulation results and the conclusions of the 

presented work are given in Section VIII. 

II. PROBLEM FORMULATION 

In this section, preliminary information for adaptive 

coverage control problem is presented. 

A. Voronoi Tesellations 

As given in [1], the set Vk is called Voronoi tessellation 

of open set  if  for  and 

. The Voronoi region Vk is defined by: 

  (1) 

The  operator is defined as Euclidean norm in  

and the points  are called as generator points.  

Fortune’s Sweepline algorithm is used for calculating 

Voronoi regions. 

B. Optimal Coverage Formulation 

Consider  as a bounded environment and 

 as a density function. Let  be a 

non-increasing performance function. Then we define 

locational optimization function as follows: 

  (2) 

The Vk is Voronoi region k and  is the generator 

point of the corresponding Voronoi cell and m is the 

number of the generator points. An example of Voronoi 

regions is given in Fig. 1. 

 

Figure 1. Example Voronoi Tessellation 

The centroid  and mass  of Voronoi regions 

defined in [3] are given by the following equations: 

  (3) 

  (4) 

If we define the function  

and take the partial derivative of locational optimization 

function  with respect to , we get the following 

equations: 

  (5) 

  (6) 

In order to minimize the locational optimization 

function given in (2), the positions of the agents should 

be equal to the centroid positions calculated in (3). These 

types of diagrams are called as Centroidal Voronoi 

Tessellations. 

Additionally, the density function  may change 

with respect to time or time-invariant. In the first case, 

 is called as time-varying distributed density 

function. If it is time-invariant,  is called as time-

invariant distributed density function, as defined in [1]. 

III. ADAPTIVE COVERAGE CONTROL WITH 

INTEGRATOR DYNAMICS  

In the integrator dynamics case, the agents are modeled 

as single integrators. The parameter vector  

and vector function  are defined in [1] as 

follows: 

  (7) 

For each element of vector , the following condition 

should be also satisfied: 

  (8) 

The lower bound of the vector  prevents the 

distributed density function from taking zero values while 

calculating the centroids of the Voronoi regions. 

The estimate of parameter vector and estimated value of 

the distributed density function and estimation error for 

k
th

 agent can be represented as: 

  (9) 

  (10) 

An adaptive control law proposed in [1] is used to 

calculate estimated centroid locations and to drive the 

agents to an optimal configuration. Also, a linear 

consensus protocol is used in estimation to speed up the 

convergence of the parameter error vectors to zero. 

IV. ADAPTIVE COVERAGE CONTROL FOR TEAM OF 

NONHOLONOMIC AGENTS 

An adaptive control law with linear consensus for a 

nonholonomic agent model is proposed in this section. 

A. Control Law for Nonholonomic Agents 

In this work, the control law used in [1] with a 

unicycle model proposed in [14] is used to drive the 

agents to the centroid locations. 

  (11) 

The control law proposed in [1] is: 

  (12) 
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In Fig. 2, the position of the agent and the centroid 

location for a single agent is given as  and . In this 

formulation,  and  are linear and angular control 

inputs, respectively.  is the heading angle,  is the 

Euclidean distance between the agent and the centroid,  

is the angle between the agent and the centroid. 

 

Figure 2. Position of the agent and model parameters 

here,  and  are control gains. The control law 

drives the agents to the centroid  positions. 

B. Nonholonomic Adaptive Coverage Control 

The adaptation law proposed in [1] is used to estimate 

the parameters of the distributed density function: 

  (13) 

  (14) 

here,  and  are adaptation gains,  is the 

identity matrix,  is a positive definite matrix,  

denotes the vector function given in (7) and  is the 

projection law defined in [1] as given below: 

  (15) 

 denotes the diagonal entries of . The first 

term in (14) is the gradient estimator [15] and the second 

term gives the consensus protocol [1]. The stability 

analysis of the adaptation rule will be given in the related 

section. 

A linear consensus protocol is used in the estimation of 

the parameter vector for a single agent. In an undirected 

graph of the mobile agents and vertices 

, the agents share their estimated 

parameter vector. Let the neighborhood of k
th

 agent be 

defined as: 

  (16) 

The communication among the nodes can be 

represented by the edges  where j
th

 

element of G is  The consensus protocol 

speeds up the convergence of the estimation for the 

mobile agents. 

V. POWER-AWARE ADAPTIVE COVERAGE CONTROL 

In real applications, the mobile agents have limited 

energy storage. Thus, power aware control laws 

considering the energy consumption of the mobile agents 

are proposed in this section. The energy consumption 

model and control laws are given and in the third section, 

the repulsive forces are used for collision avoidance. 

A. Energy Consumption Model 

The energy consumption model [10] is based on the 

motion of the agent. The linear and angular velocities  

and  are the main variables in energy consumption 

model. 

  (17) 

where  is the capacity of embodied 

energy and ,  are the model coefficients. 

B. Power-Aware Control Laws 

According to the energy consumption model (17), we 

propose the following power-aware coverage control 

laws which take the energy consumption of the mobile 

nodes into account. For the agents with single integrator 

dynamics, the control law is: 

  (18) 

where  are the control gains. 

If we take the locational optimization function in (2), 

an energy consumption term can be added to the function 

 to show that the control law minimizes the 

consumption. 

  (19) 

  (20) 

For the non-holonomic agents, the control laws are 

given as in (21): 

 

  (21) 

where  are the control gains. 

The stability analysis of the control law is given in the 

following section. 

C. Power-Aware Control Laws 

Repulsive forces are used to prevent the robots from 

collision and the theory comes from the potential 

functions [16]. The definition of the potential functions is 

the addition of the attractive forces pulling the robot to 

the end configuration and the repulsive forces keeping the 

robot distant from other objects. The forces are defined as: 
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  (22) 

The potential function is defined as: 

  (23) 

The definition of the repulsive potential function is: 

  (24) 

where  is a positive scaling factor,  is distance of 

influence and  is the distance function from obstacle 

region  to the agent. It is taken as: 

  (25) 

The repulsive force can be calculated as: 

  (26) 

  (27) 

where  is the angle between the obstacle and the robot. 

The repulsive force is then multiplied with a coefficient  

and integrated once to obtain the velocity. 

  (28) 

  (29) 

The final velocity formulation in (29) provides 

collision avoidance among the mobile agents. 

VI. STABILITY ANALYSIS 

In this section, the Lyapunov stability analysis of the 

proposed controller will be given. We consider n non-

holonomic agents with dynamics (11) and control laws 

(13)-(15) and (21). So, we start with defining : 

  (30) 

We define the Lyapunov function candidate as follows: 

  (31) 

here  and  denote positive definite 

matrices and  is a positive constant. Taking the 

derivative of the Lyapunov candidate yields: 

  (32) 

If we replace (13) in (32) we get the derivative of the 

Lyapunov function as follows: 

  (33) 

The first term is negative. The proof is given in [1]. 

  (34) 

  

 (35) 

where . The second term gives: 

   (36) 

The third term becomes: 

   

  

  

(37)

 

The fourth term gives: 

  (38) 

For the fifth term, the proof is given in [1]. 

   

  (39) 

The sixth term is negative since ,  and  

are positive. 

  (40) 

Since  is positive definite and lower bounded and 

, then , ,  and 

 as . 

VII. SIMULATION RESULTS 

Simulations are carried out in MATLAB environment 

with 5 agents. The dimensions of the map are 10 by 10 

meters.  

The coefficients used in simulations are 

 

and . For the repulsive fields, the gains are 

chosen as  and . 

The distributed density function 

expanding circle and it is triggered at certain times in the 

simulation. The estimated density function  is 

divided into 64 cells. The vector function  is chosen as: 

  (41) 
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where .  denotes  term of the vector 

function and  is the center of the Gaussian function.   

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The positions and orientations of the mobile agents given in (a) 
and (c), and corresponding density functions given in (b) and (d) 

The results of the simulation carried out are given in 

Figs. 3-8. Fig. 3 shows two simulation frames in which 

the position and orientation of mobile agents and 

corresponding density functions are given. 

In Fig. 4, the distance and angular errors of 5 agents 

show that the multi-agent system with the proposed 

controller is asymptotically stable. 

 

Figure 4. Distance and angle errors  

In Fig. 5 and Fig. 6, the parameters converge to the 

actual values with a linear consensus protocol. As given 

in the proof in stability analysis section, the errors are 

going to zero asymptotically as the time goes to infinity. 

 

Figure 5. Parameter estimation errors 

In Fig. 6, the resulting errors of the linear consensus 

are given. The errors converge to zero as given in the 

result in the stability analysis section. 

Fig. 7 shows the effect of the power-aware control 

laws to the power consumption of the nodes for 5 agents. 

By changing the controller coefficients the total energy 

consumption of the nodes can be reduced. The result is 

verified with different coefficients. 

In Fig. 8, the simulation results with 10 agents show 

that the power consumption of the nodes are affected by 

changing the controller coefficients appropriately. By 

increasing the coefficient , there is more energy left in 

the storage mediums. 

 

Figure 6. Consensus errors with linear consensus protocol 
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Figure 7. Energy consumption of the nodes with respect to controller 
parameters (5 agents) 

 

Figure 8. Energy consumption of the nodes with respect to controller 

parameters (10 agents) 

VIII. CONCLUSIONS 

In the paper, a new approach to the coverage control 

problem using adaptive coordination and power-aware 

control laws is proposed. The non-holonomic mobile 

agents estimate the dynamic density function and a linear 

consensus law is used to speed up the parameter 

convergence.  

A new adaptive power-aware controller is proposed 

and its stability analysis is given. According to the 

simulations carried out in MATLAB environment, the 

results show that with the used adaptive control laws, the 

mobile nodes estimate the distributed density function 

correctly. The estimation and consensus errors reach to 

zero asymptotically while the time goes to infinity.  

By using the estimated density function, the mobile 

nodes position themselves by using the proposed power-

aware control laws. Besides, the repulsive forces provide 

collision avoidance. The simulation is carried out with 5, 

and 10 agents. By changing the controller coefficients the 

total energy consumption of the mobile agents can be 

reduced. The theoretical results are verified with 

simulation results.  
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