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Abstract—Double inverted pendulum system is highly 

nonlinear and unstable system, thus its stability is a matter 

of concern, particularly when the system components have 

parametric uncertainty. The aim is to balance the two 

pendulums vertically on a movable cart. This paper presents 

first the dynamic modeling of the system based on Euler –

Lagrangian method and then uncertain model is obtained 

by considering the parametric uncertainty in moment of 

inertia of pendulums and friction coefficient of hinges and 

cart. In this paper, reference trajectory control, disturbance 

rejection and robust performance using H∞ and µ synthesis 

controllers are made. Both controller shows good transient 

response, disturbance rejection and robust stability, but µ 

synthesis controller provides the superior robust 

performance as compared to H∞ controller.  

 

Index Terms—Double inverted pendulum system(DIPS), H∞ 

Controller, Interconnected system, Linear Fractional 

Transformation (LFT), µ- Synthesis Controller 

 

I. INTRODUCTION 

The double inverted pendulum is a highly nonlinear 

and unstable system. It also exhibits many problems 

found in industrial and robotic applications. Many 

modern technologies use the concept of inverted 

pendulum such as altitude control of space satellite and 

rockets, balancing of ships against tides etc. The aim is to 

balance the pendulums vertically on a movable cart. In 

the design of robust control system, it is conventionally 

assumed that the system is affected by structured and 

unstructured uncertainties. Thus the robust properties of 

closed loop system could be achieved by using a robust 

controller. Some significant results on robust control 

theory and some recent results on deterministic and 

probabilistic methods for systems with uncertainties has 

been reported [1] and [2]. Double inverted pendulum 

using H∞ and µ- synthesis controllers has been designed 

with multiplicative output uncertainty and designed 

controller has been implemented on a microcomputer for 

laboratory experiments [3]. µ controlled system has a 

quite good performance and seems to be a little better 

than H∞ controlled system with respect to both 
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performance and robustness. To reduce the effect of dry 

friction between cart and rail for a single inverted 

pendulum using H∞ controller, where dry friction is taken 

as disturbance input. The influence of friction can be 

reduced in the reference tracking problem with H∞ 

control [4]. H∞ loop shaping controller design for double 

inverted pendulum system has been reported [5]. Results 

shows that the designed controller work satisfactory. The 

relative stability and disturbance attenuation properties 

are investigated for a triple inverted pendulum, the 

controller design is based on H∞ sub optimal control 

problem [6] and [7]. External disturbance torque has been 

incorporated as part of control problem. The effect of 

disturbance is minimized using H∞ sub optimal control 

design. Several controllers like pole placement, LQR, H∞ 

and µ are designed and compared with respect to their 

performance and robustness properties [8]. In which µ 

controller is found to have superior relative performance. 

H∞ and µ synthesis controller are developed and their 

performance are compared for the two link rigid and 

flexible manipulators in which µ synthesis controller 

shown to have superior robust performance [9]-[11]. 

Since moment of inertia of the pendulums and viscous 

friction coefficient of hinges and cart are difficult to be 

estimated precisely. It makes sense to assume unknown 

deviations in these parameters. It would be important to 

treat uncertainties in such parameters as structured 

uncertainties’ rather than congregate them as unstructured 

uncertainty. 
In all the previous research work, reference trajectory 

control and disturbance rejection of double inverted 
pendulum system with parametric uncertainty in 
pendulum masses and viscous friction in the hinges and 
cart has not been considered. In this paper, the reference 
trajectory, disturbance rejection and robust performance 
using H∞ and µ synthesis controllers have been compared. 
Both controllers show good robust stability. 

II. MATHEMATICAL  MODELING 

A. Dynamic Modeling 

The double inverted pendulum system consists of a 

cart placed on a track, and two aluminium arms 
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connected to each other. These are constrained to rotate 

within a single plane. The axis of rotation is 

perpendicular to the direction of motion of the cart. The 

cart is moved by a servo motor. Fig. 1 shows the 

schematic diagram of double inverted pendulum system. 

All parameters and variables are defined in the Table I. 

The nominal values of parameters are given in Table II.    

 

Figure 1.  Schematic diagram of double inverted pendulum system. 

TABLE I.  SYSTEM NOMENCLATURE 

Symbol      Description 
m1          Mass of the lower arm 

m2                 Mass of the upper arm 
m0          Mass of the cart 

L1          Length of the lower arm 

L2          Length of the upper arm 
l1            Distance  from bottom to centre of gravity of lower arm 

l2            Distance  from bottom to centre of gravity of upper arm   

c0          Friction coefficient between cart and track 

c1          Friction coefficient between lower arm and cart 

c2          Friction coefficient between two arms 
J1          Inertia of lower arm around centre of gravity 

J2          Inertia of upper arm around centre of gravity 
Θ1          Angle between vertical and lower arm 

Θ2            Angle between vertical and upper arm 

x           Cart position 
  τ1              Disturbance torque to the lower arm 

  τ2          Disturbance torque to the upper arm 
  u           Input voltage to the motor 

g           Acceleration of gravity 

tm          Control torque 

 

TABLE II.  NOMINAL VALUES OF THE PARAMETERS 

symbol Values 

m1 0.548kg 

m2 0.41kg 

m0 2.0kg 

L1 0.35m 

L2 0.25m 

J1 0.0547kg-m2 

J2 0.0521kg-m2 

c0 0.0654Nms 

c1 0.0232Nms 

c2 0.0088Nms 

The dynamic modeling based on Euler lagrangian 

formulation is obtained from the lagrangian(L). 

i
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Euler- lagrangian equations can be modified 

considering friction in the joints and motor. 
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After solving equations (2), (3) and (4), these can be 

written in vector matrix form. 
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B. LFT Modeling 

Considering the parametric uncertainty in moment of 

inertia and friction coefficients of double inverted 

pendulum system. The uncertainty in the moment of 

inertia and friction coefficients are represented as 

      (1 ), (1 )
i ii i i j i i i cJ J P c c s                   (6) 

where iJ  and ic  are the nominal values of the 

corresponding moment of inertia and friction coefficient 

respectively. Pi = 10% and si= 15% are the maximum 

relative uncertainty in each of them. Where 

-1 ≤  
ij

 , 
ic   ≤ 1; ji = 1,2;ci = 0,1,2 

The system block diagram with uncertain parameters 

are shown in the Fig. 2 

15

Journal of Automation and Control Engineering Vol. 5, No. 1, June  2017

©2017 Journal of Automation and Control Engineering



 

Figure 2.  System block diagram with uncertain parameters. 

After linearization of the model and choosing the state 

space variables as: 

x1 = x, x2 = θ1, x3 = θ2, x4 = x ,x5 = 
1 ,x6 = 

2      (7)
 

The state and output equations are obtained as follows. 
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The uncertain model of the whole system can be 

described by an upper LFT representation as shown in the 

Fig. 3. 

 

Figure 3.  LFT model of double inverted pendulum system. 

Thus the open loop double inverted pendulum system 

is a nine-input and nine-output system. 
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where Gsusp and Δsusp are defined as.   
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C. Open loop Interconnected System 

The structure of interconnected system is as shown in 

the Fig. 4. In order to achieve better performance two 

degree of freedom (2DOF) configuration is used. The 

feedback controller uses outputs x, θ1 and θ2 of double 

inverted pendulum to compute the control (u) driving the 

actuator. There are two external sources of disturbance 

acting on the two pendulums. Sensor noise acting on the 

three output measurement, modeled as weighting function 

wn. Performance weights and control weights are wp and 

wu. The control objective can be interpreted to minimize 

the impact of disturbance inputs d1 and d2, on the outputs 

θ1 and θ2. Various weighting matrices are chosen as. 

 

Figure 4.  Structure of the interconnected system. 
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III. ROBUST CONTROLLER DESIGN 

A. H∞ Controller 

H∞ optimization approach is an effective and   efficient 

robust design method for linear, time invariant control 

systems. The robust design is to find a controller k for a 

given system such that, the closed loop system is robustly 

stable. For good tracking and disturbance attenuation, the 

design problem is to find a optimal controller which 

minimizes
1( )I GK 

 and for less control energy,
 

1( )K I GK 

  is to be minimized. 

In order to have good tracking and disturbance 

rejection and to limit the control energy, we have to solve 

the mixed sensitivity problem. Its cost function can be 

described as 

1

1

( )

( )

I GK

K I GK










                         (8) 

The above cost function may be recast into a standard 

H∞ configuration shown in the Fig. 5. 

 

Figure 5.  The standard H∞ configuration. 

 P(s) is called the generalized plant/interconnected 

system. All the external inputs are denoted by w and z 

denotes the output signals to be minimized. 

Y is the vector of measurements available to the 

controller.  u is vector of control signals. 

The objective is to find a stabilizing controller k to 

minimize the output z, in the sense of energy. Thus it is 

equivalent to minimize the H∞ norm of the transfer 

function from w to z. 

The design objective now becomes min ( , )F P K   , 

it is referred to as the H∞ optimization problem. 

B. µ Synthesis Controller 

In standard M-Δ configuration as shown in the Fig. 6. 

z  =  FU (M,Δ)w and ( , ) 1UF M            (9) 

 

Figure 6.  The standard M-Δ configuration. 

It denotes the stability of Fu(M,Δ) which means the 

stability with respect to the plant perturbation Δ. The 

relation between M and p can be obtained by 

M(p,k)   =  FL(p,k)                       (10) 

For robust stability and robust performance, it is 

required to find a stabilizing controller k such that  

sup µ [M(p,k)]                   (11) 

For optimal robust stability and robust performance, 

the objective is to solve for k such that 

Inf  sup µ[M(p,k)]                      (12) 

An iterative method is used to solve (12). The method 

is called D-K iteration synthesis method. It is based on 

solving the following optimization problem (13) for a 

stabilizing controller k and a diagonal constant scaling 

matrix D. 

Inf sup inf [DMD
-1

 (jw)]                (13) 

IV. SIMULATION AND RESULTS  

Double inverted pendulum system using robust 

controller has been designed in MATLAB. The closed 

loop transient and disturbance rejection responses have 

been obtained using H∞ and µ- synthesis controllers. The 

transient response of the closed loop system is obtained 

using reference vector (measured in radians) given 

by

1.0

0.2

0.2

r

 
 


 
  

, and disturbance vector (measured in N-

m) is set to 
0.1

0.1
d

 
  
 

 

A. H∞ Control 

Fig. 7(a) and 7(b) show the closed loop transient 

responses of the system with H∞ controller. The cart 

position has a settling time of 5s, whereas the lower and 

upper pendulums has returned to vertical position with a 

settling time of 6s.The response is fast with small 

overshoots of the output variables. The steady state errors 

are reduced to zero in all cases.  These are very small as 

compared to the system without controller. Fig. 8 shows 

the closed loop disturbance rejection responses for the 

lower and upper pendulums.  The effect of disturbance is 

minimized using H∞ controller. 
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Figure 7 (a) Transient response (Cart Position).   
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 Figure 7 (b) Transient response (Lower and upper arm displacement). 
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Figure 7.  Disturbance rejection response. 

Fig. 9(a) and 9(b) show the robust stability and robust 

performance of the system with H∞ controller. The upper 

and lower bounds of the structured singular value (µ) are 

shown in the Fig. 9(a). It is clear that closed loop system 

with H∞ controller achieve robust stability, since the 

maximum value of µ is 0.23. The µ value corresponding 

to robust performance analysis are shown in the Fig. 

9(b).The closed loop system does not achieve robust 

performance, because the maximum value of µ is 

1.10.Hence it is concluded that the designed H∞ controller 

lead to good closed loop response, but doesn’t ensure 

necessary robust performance of the closed loop system. 
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                                Figure 9(a) Robust stability. 
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                               Figure 9(b) Robust performance. 

B. µ -Synthesis Control  

The closed loop transient response of the system with 

µ- synthesis controller has been shown in the Fig. 10(a) 

and 10(b). The response is fast with small overshoots of 

the output variables, but the response is slightly slower 

than those obtained with H∞ controller. Reduction of 

steady state error is good. Fig. 11 shows the closed loop 

disturbance rejection responses for the lower and upper 

pendulums.  With disturbance acting on the system, lower 

arm shows zero steady state error, but upper arm shows a 

steady state error of -0.16 radians. 
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Figure 10 (a) Transient response(cart position). 
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           Figure 10(b) Transient response (Lower and upper arm 
displacement). 
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Figure 11.  Disturbance rejection response.  

Figs. 12 (a) and 12 (b) show the robust stability and 

robust performance of the system with µ- synthesis 

controller. The maximum value of structured singular 

value is 0.1, thus satisfying the criteria for robust stability. 

Fig. 12(b) shows that the maximum value of µ is less than 

one for frequencies less than 1KHZ, thus it ensures that 

good robust performance is achieved. 
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Figure 12 (a) Robust stability. 
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Figure 12 (b) Robust performance.    

V. CONCLUSION 

 In this paper, H∞ controller and µ- synthesis 

controllers are successfully designed using MATLAB for 

double inverted pendulum system. Both controllers are 

capable of stabilizing the system very effectively, show 

good reference trajectory control, disturbance rejection 

and robust stability. Both controllers ensure robust 

stability, but as far as robust performance is concerned, 

µ-synthesis controller provides the superior robust 

performance over the required frequency range. 
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