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Abstract—A high-performance DC-AC power converter 

using adaptive control technique for advanced material 

machining (AMM) is developed in this paper. The presented 

technique combines the merits of hyperbolic tangential 

sliding surface (HTSS) and adaptive neuro-fuzzy inference 

system (ANFIS). The HTSS not only has the robustness of 

classic SMC but increases the system trajectory convergence 

speed. However, once a highly nonlinear load occurs, the 

chattering still exists. The chattering causes high total 

harmonic distortion (THD) in DC-AC power converter 

output voltage, thus yielding the instability and unreliability 

of advanced material machining. The ANFIS is thus 

employed to eliminate the chattering and simultaneously the 

HTSS provides finite system-state convergence time. By 

combining HTSS with ANFIS, the DC-AC power converter 

of AMM will achieve robust performance. Experimental 

results are given to conform that the proposed technique 

can obtain low total harmonic distortion (THD) and fast 

transience even under phase-controlled loads. Owing to the 

notable superiorities, e.g. computational quickness, practical 

simplicity, and programmable easiness in the proposed 

technique, this paper will be a helpful reference to 

researchers of related advanced material machining. 

 

Index Terms—DC-AC power converter, advanced material 

machining (AMM), hyperbolic tangential sliding surface 

(HTSS), adaptive neuro-fuzzy inference system (ANFIS) 

I. INTRODUCTION 

The DC-AC power converters are popularly used in 

advanced material machining (AMM), such as nickel-

based super alloys, nuclear materials, and titanium alloys 

[1-4]. The requirements of a high-performance DC-AC 

power converter include output voltage with low THD 

even under nonlinear loads, fast transient under phase-

controlled load and steady-state errors as small as 

                                                           
 Manuscript received October 28, 2016; revised July 19, 2017. 

possible. To obtain these requirements, proportional-

integral (PI) controller is one of the useful ways to 

achieve suitable characteristics. But, PI is difficult for 

converter control to gain good steady-state and dynamic 

response under nonlinear loads [5-8]. Many control 

techniques are also used in literature, such as mu-

synthesis, H-infinity control, wavelet control, and so on 

[9-14]. However, these techniques are complex, and 

difficult to realize. Proposed in 1950s, sliding mode 

control (SMC) provides insensitivity to parameter 

variations and removal of disturbances [15], [16]; SMC 

of DC-AC power converter systems are also developed. 

However, these SMC systems use linear sliding surface, 

and such surface has infinite system-state convergence 

time [17-20]. Thus to increase the convergence speed, a 

hyperbolic tangential sliding surface (HTSS) can be used. 

Compared with linear sliding-surface-based, the HTSS 

can enforce system tracking error to converge to zero in 

finite time [21-24]. However, when a severe nonlinear 

load is applied, the HTSS system still exists in chattering 

problem. The chattering will cause high THD in DC-AC 

power converter output and the stability and reliability of 

the AMM are thus deteriorated. Adaptive neuro-fuzzy 

inference system (ANFIS) associating the training ability 

of neural network with approximate human reasoning of 

fuzzy logic is well-known artificial intelligence approach. 

By such a hybrid learning approach, the error between 

desired and actual output can be minimized [25-28]. 

Therefore, the ANFIS is used to eliminate the chattering 

while the HTSS is utilized to achieve finite system-state 

convergence time. When this proposed technique is 

applied to the control of a DC-AC power converter of 

AMM, the system will show the effectiveness of low 

output voltage distortion, fast transient and insensitivity 

to load disturbances. Experimental results demonstrate 
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the feasibility and advantages of using the proposed 

technique. 

II. PROPOSED ADAPTIVE CONTROL TECHNIQUE FOR 

DC-AC POWER CONVERTER OF AMM 

The system block diagram of DC-AC power converter 

of AMM is illustrated in Fig. 1. Define ov  be the output 

voltage, refv  be the desired sinusoidal waveform, and 

refoe vvv   be the voltage error. Suppose that the 

switching frequency is high enough, DC-AC power 

converter can be considered as a constant gain, pwmK . 

Let eve 1  and 21 ee  , the error dynamic matrix can be 

written as  
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Figure 1. DC-AC power converter of AMM. 

The control objective is to design a control law pu  

well so that the output voltage can equal the desired 

reference sinusoidal. The pu  is designed below. 

sep uuu                                (2) 

where the equivalent control, eu  is valid only on the 

sliding surface, and the sliding control, su  compensates 

for the disturbance effects, and then the system will reach 

the sliding surface and converge in finite time. 

To accelerate the convergence speed of the sliding 

phase and reaching phase, a hyperbolic tangential sliding 

surface is created as 

)tanh( 12 ee                        (3) 

where   and   are constants. 

From (3), we have 
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The equivalent control, eu  can be formulated as 

0
 ,0


 ep uuf

                          (5) 

The su  is used to suppress the system uncertainties, 

and can be obtained via the following inequality. 

0
 seP uuu

                         (6) 

Then, substituting (1) and (5) into (6), we have 

0  ,)sgn( 1  KeKus                    (7) 

Though the (7) provides finite system-state 

convergence time to the origin, the chattering will occur 

when a highly nonlinear load is applied. Thus, one 

solution eliminates the chattering via ANFIS as follows. 

Firstly, a Takagi-Sugeno (T-S) fuzzy formation is 

established by the ANFIS and then we model the given 

training data. Thus, the ANFIS can be expressed as 

ininii
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            (8) 

where iRule  represents the thi  fuzzy rules, ji  ,2 ,1 , 

ikA  is the fuzzy set in the antecedent associated with the 

thk  input variable at the thi  fuzzy rule, and ini pp ,1 , 

ir  symbol the fuzzy resulting parameters.  

Using the ANFIS, the pu  yields 
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where jwwww  111  and jjj wwww  1 .  

Due to ininii repepu  11 , the (9) can be 

rewritten as  
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The (10) implies that the ANFIS with the formation of 

five-layer and such formation can be displayed as Fig. 2. 
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Figure 2. ANFIS formation 
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III.  EXPERIMENTAL RESULTS 

The experimental verification of the proposed 

technique is carried out on a DC-AC power converter 

with specifications shown in Table I. 

TABLE I. SYSTEM PARAMETERS 

Filter inductor 
 

L=0.5 mH 

Filter capacitor 

 

C=10 μF 

DC supply voltage Vdc=200 V 

Resistive load 

 

R=10 Ω 

Output voltage and frequency vo=110 Vrms,  f=60 Hz 

Switching frequency 

 

fs =18 kHz 

We presume that the LC filter parameter values are 

varied from 10% ~ 200% of nominal values as the 

proposed system is under 10Ω resistive load; Fig. 3 and 

Fig. 4 show experimental output voltage waveforms with 

the proposed technique and the classic SMC, respectively. 

Owing to the elimination of the chattering, the proposed 

technique is insensitive to LC parameter variations than 

the classic SMC. To examine the transient behaviour of 

the DC-AC power converter of AMM, Fig. 5 shows 

experimental output voltage and the load current for the 

proposed technique with phase-controlled load. As can be 

seen, a fast recovery of the steady-state response and 

slight voltage depression can be obtained; however, the 

classic sliding mode controlled DC-AC power converter 

of AMM, shown in Fig. 6 indicates large voltage 

depression and slow recovery time. Therefore, the 

proposed technique furnishes higher tracking precision, 

faster convergence, better voltage compensation and 

greater robustness. The block diagram of the hardware 

implementation is represented as Fig. 7. The output 

voltage %THD in the face of LC variations and phase-

controlled load are given in Table II. 

  

 

Figure 3. Experimental waveforms for the proposed technique with LC 
variations (100V/div; 5ms/div) 

 

Figure 4. Experimental waveforms for the classic SMC with LC 
variations (100V/div; 5ms/div) 

 

Figure 5. Experimental waveforms for the proposed technique with 
phase-controlled load (100V/div; 20A/div; 5ms/div) 

 

Figure 6. Experimental waveforms for the classic SMC with phase-
controlled load (100V/div; 20A/div; 5ms/div) 
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Figure 7. Block diagram of hardware implementation. 

TABLE II. OUTPUT VOLTAGE %THD UNDER LC PARAMETER 

VARIATIONS AND PHASE-CONTROLLED LOAD 

 Proposed Technique Classic SMC 

Loads LC 
Variations 

Phase-
Controlled 

Load 

LC 
Variations 

Phase-
Controlled 

Load 

%THD 0.15% 1.81% 9.42% 10.04% 
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IV. CONCLUSIONS 

This paper develops a HTSS with ANFIS, and then 

applied to the DC-AC power converter of AMM so that 

chattering elimination, fast dynamic response and low 

THD output voltage can be obtained. The proposed 

technique not only has the robustness of classic SMC but 

also increases the convergence speed of the sliding phase 

and reaching phase, and resolves the chattering problem. 

The improvement in system performance has been 

testified via experiments, confirming the proposed 

technique. Compared to classic SMC, the proposed 

technique indeed provides the insensitivity to load 

interferences. 
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