

388©2016 Journal of Automation and Control Engineering

Journal of Automation and Control Engineering Vol. 4, No. 5, October 2016

doi: 10.18178/joace.4.5.388-392

Research on Automotive UDS Diagnostic

Protocol Stack Test System

Jinghua Yu and Feng Luo
Clean Energy Automotive Engineering Center, School of Automotive Studies, Tongji University, Shanghai, China

Email: thh1990@163.com, luo_feng@tongji.edu.cn

Abstract—This article presents the test methods of UDS

(Unified Diagnostic Services) diagnostic protocol stack in

vehicles, which includes two parts. One is the unit test of the

main functions in network layer, another one is the

functional test of the network and application layer.

Corresponding test environments based on software and

hardware are designed. Test cases are created according to

international standard. All these tests ensure the efficiency

of the development and the accuracy and standard of target

protocol stack. Finally the designed test system is verified

correctly.

Index Terms—UDS, diagnostic protocol stack, unit test,

functional test

I. INTRODUCTION

Diagnostic system in vehicles is a monitor system,

which supervises the running statuses of all the important

components and reports them to users to ensure the

security of a vehicle. Besides it is also the only interface

between the ECUs in vehicles and the tools outsides. It

means that this diagnostic system plays an important role

in vehicles.

The UDS protocol stack is such a diagnostic system

based on the international standards, which can

implement vehicles’ standard diagnostic communication

normatively [1]. Nowadays more and more automobile

companies and OEMs are using this UDS technique to

unify their products and increase the efficiency of the

cooperation with their customs or suppliers. Therefore the

test for a specific UDS protocol stack is very important. It

can ensure the correctness of the UDS stack according to

corresponding specifications and international standards.

A good method can improve the efficiency of the

process and find potential errors in a target stack in order

to ensure that the UDS stack works correctly in vehicles.

Some methods have been designed to test UDS stack.

A method using VECTOR’s testing tools chain can test

the whole protocol stack automatically [2]-[4]. Other

software tools like LabVIEW and c++ studio can also be

used to designed a simple upper tester of the test with

some CAN simulation tools for a particular UDS stack

[5]-[7].

Manuscript received July 16, 2015; revised September 13, 2015.

However, all these methods above can only be used

after the whole stack is done. They cannot be

implemented for a separated part of an UDS stack in a

particular developing phase and not suitable for the stack

under developing to check every step, which is essential

to the development. Besides, the professional test tool for

UDS is very expensive and the simple tester made by

software like LabVIEW is not systematic. Therefore this

article is going to introduce a method, which can make up

for the defects above. It is systematic, flexible and cost-

effective, which does not relay on a particle expensive

tool.

II. DIAGNOSTIC PROTOCOL OVERVIEW

The object of this test is the UDS Diagnostic Protocol

Stack Based on CAN bus. According to corresponding

international standards, the whole stack is divided into

three layers in this article. Fig. 1 shows the structure of

the diagnostic protocol stack.

Figure 1. Structure and UDS diagnostic protocol stack

The lowest layer is the driver layer of CAN

communication based on ISO 11898. This layer is in

charge of the transmission and reception of CAN frames

[8].

The middle layer is network layer, which can pack the

data from upper layer to the lower one, or unpack the data

from the lower layer to the upper one [9]. There are two

kinds of transmission in this layer. If the length of data is

less than 9 bytes, it can be transmit via a single frame.

Otherwise multi frames should be used. They obey the

particular transmission mechanism specified in ISO

15765-2, including correct timing parameters, error

handling and interface to the upper layer.

The highest layer is the diagnostic application layer.

There are many services defined in ISO 14229-1 here,

which can be called by requests. After successfully

receiving the data from network layer, the diagnostic

layer can extract useful data and carry out relevant

services. For example, a service called ‘ECU Reset’ can

reset the target ECU when the operation condition is meet.

In order to test the diagnostic protocol stack introduced

above, there are two kinds of test used in this article.

They are unit test and functional test. The former one

tests a single function in codes right after the codes are

done, and the later one tests the real performances of the

physical communication system.

III. SYSTEM DESIGN FOR UNIT TEST

Unit test is always the most basis part of a test in the

software development and plays an important role. The

purpose of it is to find the probable errors in every tiny

software unit. It is an offline test, which is only based on

a computer without any connection to the physical

network. It can test every single function in codes.

A. System Structure

Fig. 2 shows the structure of unit test environment.

Figure 2. Structure of unit test environment

The test engine is the core of the unit test. It builds a

virtual environment to run a part of stack and judge the

correctness. The driver codes are extra codes to call the

test codes. According to the stack specification the test

inputs and expected outputs can be designed. After

importing the designed inputs and expected outputs into

the test system, a test report can be generated by the

report module, which can compare the real outputs with

the expected one and give the results.

This test can be used at any time to make sure that the

codes written can perform as expected and lay a correct

foundation to the following development of the stack.

B. Unit Test for Network Layer

The test engine of the unit test is set up by ‘S-function

builder’ in MATLAB/SINMULINK. Users can establish

the s-function based on c language easily through the

graphic user interface offered by MATLAB. S-function is

an abbreviation of system-function. It is actually an

interface of MATLAB to get connect to the self-defined

program written by users. By this way MATLAB can

interact with other codes easily and flexibly.

The protocol stack codes can be called in MATLAB

through ‘S-function builder’. Fig. 3 shows the

configuration dialog of s-function builder.

Figure 3. Configuration of s-function builder

Each function in the codes can be test as a test case.

Before testing, inputs and expected outputs shall be

designed according the expected function of the codes.

After every execution of the test case, the real outputs

will be compared with the expected outputs and then get

the result whether the function is correct or not.

Fig. 4 shows the blocks of the test environment. The

blue rectangles are the inputs and outputs interfaces

connected with the report module. The biggest one in the

center is the code engine, which does the main test work,

together with some small data process module beside it.

Figure 4. Example test environment for a unit test

389©2016 Journal of Automation and Control Engineering

Journal of Automation and Control Engineering Vol. 4, No. 5, October 2016

The test case starts running when all the configurations

are done in the report generation module. The system will

get the inputs from the configuration file automatically

and run the target test codes. Finally a test report is

generated to indicate the end of this test case.

IV. SYSTEM DESIGN FOR FUNCTIONAL TEST

The unit test can only make sure that each function has

right outputs. But it cannot ensure the correct interaction

between different functions. So it is necessary to do the

functional test of the whole network layer. Whether the

network layer works as defined can be checked through

this test. It is an online test, which should be based on a

UDS communication network. It can perform functional

tests to judge if the stack works as descriptions in

specification files.

A. System Structure

Fig. 5 shows the structure of functional test.

Figure 5. Structure of functional test

The test engine is a CAN simulation tool, which can

simulate the communication according to the scripts. It

drives the whole test and monitor the frames flow on the

CAN bus. The target UDS stack is downloaded into an

ECU, which becomes a DUT (Device under Test). The

test engine and DUT constitute a real UDS

communication network.

This functional test can be used to test every single

function independently in network layer and application

layer in UDS target stack at any time.

B. Functional Test for Network and Application Layer

The precondition of this functional test is a real

network system. To build such a system, the MCU

XDP512 from Freescale is used as the DUT and a

computer with CAN simulation tool is used as the test

engine. They are connected to the same CAN bus and

work as a diagnostic system. Fig. 6 shows the real test

environment of this functional test.

Figure 6. Test environment of functional test

The system includes test board of MCU, network

board, which works as a CAN bus, relevant power, wires

and programmer. The programmer downloads the

configuration into the device under test to meet the

specific test requirement. Compare to this part, the test

scripts are imported into AutoCAN to execute to the

simulation.

Figure 7. Operation Interface of AutoCAN

The connection between computer and CAN bus is

made by a tool called AutoCAN. It is a tool for

automotive CAN bus from ihr GmbH. It can be

connected into the CAN bus directly and send or receive

CAN frames through an up-level application program.

Besides it also support the usage of scripts. By writing the

scripts and simulating the codes, the computer can work

as a simulation diagnosis instrument and meet the needs

390©2016 Journal of Automation and Control Engineering

Journal of Automation and Control Engineering Vol. 4, No. 5, October 2016

of the network layer functional tests. Fig. 7 shows the

operation interface of AutoCAN used in computer.

Besides the test environment, the test case also plays

an important role in the test. A good design can traverse

different situations and find potential errors to ensure the

correctness of the codes.

The design of test cases in network layer is taken as an

example. In order to traverse all the possible situations of

the network layer, the parameters are divided into

different layers.

Fig. 8 shows the structure of the parameter layer.

Figure 8. Structure of parameter layer

By changing a particular parameter and fixing the rest

of them according to the layer structure above, a test case

is built. A test case table can be generated by permutation

and combination of these options, which can be used as

the standard of the network layer functional test. Fig. 9

shows the format of the test cases table.

Figure 9. Format of the test cases table

Each column in the table is a single test case, which

tests a particular work situation of the stack under test.

Then the test scripts can be written based on the test

cases using scripts editor of the CAN simulation tool. The

scripts are based on C language. There are many

functional APIs to control the behaviors of the tool. For

example the function ‘configure_message’ is used to

configure a CAN frame to a defined variable. Using

‘send_frame’ function can send this configured frame to

the real physical CAN bus.

After establishing the test communication and running

test scripts, the frames flow will be recorded by the tool.

By analyzing the flow and test requirement, it is easy to

judge whether the stack works correctly.

V. TEST VERIFICATION

A. Verification for Unit Test

In order to verify the unit test system, a test case is

introduced here as an example.

A function called ‘NL_SetFFData’ should judge

whether the first frame in multi-frame communication is

configured correctly. So the inputs are the data which

needs to be transmit and the expected output is a correct

data frame processed by this function.

Firstly a test data list should be designed. Fig. 10

shows the test case list of this function. The inputs are on

the left side and the expected outputs are on the right side.

Figure 10. Test case list of ‘NL_SetFFData’

Then configuration file is filled according to this list.

The test environment is shown in Fig. 4. After running

the test, the report shows that the real outputs meet the

expected outputs. Therefore the test for this function has

passed.

By using this method, every function in the stack can

be checked without delay and flexibly.

B. Verification for Functional Test

One test case from the list is also taken as an example

to verify the functional test.

The test should include the following process: MCU

sends a message with 30-byte-long data under the control

of FlowControl frame. So the MCU should not only send

a message of 30 bytes, but it should also cooperate with

the computer according to the flow control mechanism.

After importing the corresponding scripts and run the

simulation, the UDS communication begins.

The expected frames flows should be as following.

AutoCAN firstly receives a First-frame from MCU. After

waiting specified time interval, it sends a FlowControl-

frame to CAN bus. If MCU receives the FlowControl-

frame correctly, it should send the consecutive frames

until all the rest of data are sent. It should be focused

whether the rest consecutive frames can be send

continuously or they should wait further FlowControl-

frames before sending.

The test tool records the frame flows during the test,

which is shown in Fig. 11 and it shows the test process

clearly. First the test tool received a First-frame from

MCU at time stamp 452.54123. Then it sent the

FlowControl-frame correctly at time stamp 525.54869.

After MCU received this frame, it began sending its

remaining frames until it finished. All the steps meet the

requirement of the expected one. Therefore this test case

has passed.

Figure 11. Records of CAN frame flows in this simulation

391©2016 Journal of Automation and Control Engineering

Journal of Automation and Control Engineering Vol. 4, No. 5, October 2016

All the other test cases can be carried out by the

method introduced before. It can check every single

function of the UDS stack in both network layer and

application layer.

VI. SUMMARY

The test method introduced in this article is a useful and

cost-effective one to test the UDS stack during the

development. It designed based on international standard

and independent from any particular test tool. Any CAN

stimulation tool which supports scripts function can be

used here. The unit test can check the codes on the

computer without a connected network. And functional

test can check the real performance of the stack. All these

test methods can be performed at any phase flexibly to

ensure that the development before is free of errors.

REFERENCES

[1] Road Vehicles-Unified Diagnostic Services (UDS)-Part 1:
Specification and requirements, International Standard ISO14229-

1-2013.

[2] P. Philipp, T. Armin, P. Thomas, S. Mueller, and C. Raetz, “A
quantitative study on automatic validation of the diagnostic

services of electronic control units,” presented at IEEE
International Conference on Emerging Technologies and Factory

Automation in 2008, 2008.

[3] S. Ma, Y. Xi, H. Ji, and F. Xu, “UDS Database development of
ECU based on ODX,” presented at the Annual Meeting of SAE-

China, March 2013.

[4] H. Zhang, D. Zhan, and C. Lin, “Design of vehicle fault diagnosis

system based on CAN bus,” Automotive Engineering, vol. 30, no.

10, 2008.
[5] M. Salcianu and C. Fosalau, “A new CAN diagnostic fault

simulator based on UDS protocol,” in Proc. International

Conference and Exposition on Electrical and Power Engineering
(EPE), 2012.

[6] X. Han and K. Bao, “Development and test of CAN bus network

layer protocol stack,” Computer Engineering, vol. 37, no. 15, pp.
232-234, 237, 2011.

[7] X. Chang, J. Yu, and Z. Liu, “Analysis and implementation of
network layer of automotive fault diagnostic standard,”

Automobile Technology, vol. 9, pp. 40-44, 2006.

[8] Road Vehicles-Controller area network (CAN)—Part 1: Data link
layer and physical signaling, International Standard ISO11898-1-

2003.
[9] Road Vehicles-Diagnostics on Controller Area Networks (CAN)-

Part 2: Network layer services, International Standard ISO15765-

2-2004.

Jinghua Yu received B.E. degree in

automobile engineering in 2013 from Tongji

University, China. She is currently a Master
student in School of Automotive Studies of

Tongji University. Her current research is

networks in vehicles, including CAN bus
control and diagnostic in vehicles.

Feng Luo received his Ph.D. degree from

Northwesten Polytechnical University. In
2002 he joined Tongji University, and

currently is a professor in School of
Automotive Studies of Tongji University. His

research interests focus on automotive

networks

392©2016 Journal of Automation and Control Engineering

Journal of Automation and Control Engineering Vol. 4, No. 5, October 2016

