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Abstract—We consider a control problem of a chain of 

integrators where there is a finite constant delay in the input 

and uncertain AC and DC sensor noise in the feedback 

channel. If a finite constant delay and uncertain sensor noise 

are included in a controller via the feedback channel, the 

signal is distorted and the entire system cannot work 

normally. Therefore, some appropriate action for a finite 

constant delay and uncertain AC and DC sensor noise effect 

is essential in the controller design. Our control scheme is 

equipped with a gain-scaling factor, an amplifier, and a 

compensator to keep the system states bounded and reduce 

the ultimate bound of the output arbitrarily small. Our 

result shows that the proposed method has a distinct 

advantage over the existing results. 

 

Index Terms—chain of integrators, amplification, 

compensator, input-delay, AC/DC sensor noise 

 

I. INTRODUCTION 

Typically, the control system operates through the 

measured sensor data. There can be a case that noise 

enters into the feedback channel in an additive form so 

that the control signal is distorted and control 

performance is degraded. Also, there can be a delay in 

control input due to various reasons in practice. These 

input delay and sensor noise problems can occur and 

there have been many related results by far. 

The measurement feedback control problems have 

been studied in [1]-[7]. In [1], a sensor noise canceling 

approach is proposed when the noise is assumed to be 

generated by a known exogeneous system. In [4], the 

authors propose a switching controller under only AC 

sensor noise. In [5], the authors deal with both AC and 

DC noise, but they require the known initial condition 

and there is no delay in the input. In [7], they deal with 

input delay and noise together, but the noise is limited to 

AC noise only. 

In this letter, we newly consider a control problem for 

a chain of integrators under input delay and AC/DC 

                                                           
Manuscript received August 6, 2015; revised November 6, 2015. 

sensor noise. Unlike [5], the initial condition information 

is not known in advance. In order to solve our problem, 

motivated by [8], [9], we add a signal amplification 

scheme to our considered system. Then, a newly designed 

controller with compensator and gain-scaling factor is 

introduced. Via system analysis, we show that our 

proposed controller derives the system output into 

arbitrarily small bound. An example is given to verify the 

advantage of our controller over the one in [7]. 

II. AMPLIFICATION SCHEME AND SENSOR 

We consider a chain of integrators with delayed input 
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where nT

n
Rxxx  ] , ,[

1
  is the state, Ru  is the 

input, ),0(   is a known finite constant. The initial 

condition is given as )()(  vu  , 0  where 

.)()(
tt

utuu    If sensor noise is included in a 

controller via the feedback channel, the signal is distorted 

and the entire system cannot work normally. Therefore, 

controller is applied such as )(u  where 

)(tSx   is the state with measurement noise, 

T

n
tStStS )]( , ),([)(

1
  is the sensor noise. The 

following condition is assumed on the sensor noise. 

Assumption 1: There exist uncertain constants 
i

d , 
i

  

and 
i

  such that 

 ) , ,1(          sin)( nitdtS
iiii

   (2) 

where ,0
ii

dd 
ii

 0  and .
ii

  

Remark 1: Our control goal is to keep the system 

states remain bounded and derive the system output into 

an arbitrarily small bound. Our control problem is 

generalized over [4] [5] [7] because input delay, unknown 
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initial condition, and uncertain AC/DC sensor noise are 

combined altogether. 

We set a reduction-type transformation [7]. 
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Then, from (1) and (3), the transformed system is 
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Due to DC noise with unknown initial condition, the 

control methods of [5], [7] may not achieve our control 

goal. To solve the problem, we modify our considered 

system with amplifiers as illustrated in Fig. 1. We add 

amplifiers and then we attach feedback sensors to 

measure the feedback signals such that sensors measure 

the amplified signals as similarly done in [8], [9]. 

 

Figure 1.  Modified system: A second-order case. 

Let us set that the system signals are amplified by a 

factor of c  via amplifiers. Then, after the amplifiers and 

sensor measurement, the signals in feedback channel 

become ).(tScx
ii

  Now, with the transformation (3), 

the actual feedback signal to be used in controller is 

expressed as ).(tScx
ii

  

III. MAIN RESULT 

For notational convenience, let ,] , ,[
1

T

n
   

).(
1

tScz
ii

  Now, we propose a measurement 

feedback controller as 
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where 1 , , c  and .0
1


n
k  Our proposed controller is 

coupled with a gain-scaling factor   and a compensator 

shown in integral forms. 

Theorem 1: Assume that Assumption 1 holds. Select 

11
 , ,

n
kk  such that 0
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1 


 kkk n

n

n   is a 

Hurwitz polynomial. Then, all states of the closed-loop 

system (1) with (5) remain bounded. Moreover, the 

ultimate bound of y can be made arbitrarily small by 

adjusting , , .c  

Proof: From (4) and (5), the closed-loop system is 
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We let ,
1 i

cz ni  , ,1  and set a virtual state as 
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Then, from (6)-(8), the closed-loop system is 

reorganized as 
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The first two terms of (10) lead to the following
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To investigate the positive definiteness of the matrix
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where  
K

P
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  . 

here, we define a notation. For any given nm  matrix 

(or vector) ],[
, ji

mM  we let  , :
, ji

mM   mi 1  and 

. 1 nj   With this notation, the last two terms of (14) 

lead to the following inequality 
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If the value of   increases, AC and DC measurement 

noise is reduced. By increasing   as follows, we have 
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Then, as shown from (22), the magnitude of the DC 

measurement noise 
i

d  can be reduced by adjusting .c  If 

the value of c  increases, DC measurement noise is 

reduced such as 
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However, as shown from (23), 
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not approach to zero. Meanwhile, recall the relation 

between   and z  as 
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Therefore, from (25), if the value of c  increases, we 

can also reduce the ultimate bound of .z  Therefore, the 

magnitude of )(t
b

  is reduced. As a result, the ultimate 

bound of 
11

)( zxty   can be made arbitrarily small. 
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Figure 2.  Simulation result of the proposed controller (5). 

IV. ILLUSTRATIVE EXAMPLE  

We consider a second-order case. The control 

parameter K  is set as ].6 ,4 ,4[ K  In our 

simulation, we set ,sin55)(
1

ttS   ttS 2sin46)(
2

  

and .1  The initial conditions are set as 1)0(
1

x  and 

.2)0(
2

x  

In order to deal with AC/DC noise, other control 

parameters are set as ,3  )(1600    and 

.700c  As shown in Fig. 2, while the controller [7] is 

unable to compensate to the measurement noise(in 

particular, DC noise), our proposed controller is 

effectively reduce the noise of AC and DC because of an 

amplifier and a newly designed compensator. 

V. CONCLUSIONS  

In this letter, we have proposed a controller for a chain 

of integrators where there exist known input delay and 

AC/DC sensor noise. Our controller equipped with a 

gain-scaling factor, an amplifier and a compensator to 

reduce the ultimate bound of the system output. We show 

the improved results over the existing results under AC 

and DC noise of sensor [7]. The benefit of our result is 

shown via comparison through simulation. 
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