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Abstract—By applying the knowledge previously obtained 

by reinforcement learning to new tasks, transfer learning 

has been successful in achieving efficient learning, rather 

than re-learning knowledge about action policies from 

scratch. However, in the case of applying transfer learning 

to reinforcement learning, it is not easy to determine which 

and how much the obtained knowledge should be 

transferred. With this background, in this study, we propose 

a novel method that enables to decide the knowledge and to 

determine the ratio of transference by adopting sparse 

coding in transfer learning. The transferred knowledge is 

represented as a linear combination of the accumulated 

knowledge by means of sparse coding. In the experiments, 

we have adopted colored mazes as tasks and confirmed that 

our proposed method significantly improved in terms of 

jumpstart and of the reduction of the total learning cost, 

compared with normal Q-learning. 

 

Index Terms—sparse coding, transfer learning, 

reinforcement learning, maze 

 

I. INTRODUCTION 

In reinforcement learning [1], an agent explores a 

target environment repeatedly, performing given tasks by 

trial and error to obtain optimal action policies in the 

environment. However, the way of learning requires quite 

a number of random explores until satisfied action 

policies are obtained, so this is regarded as a big problem 

with the method [2]. To solve this problem, many 

approaches have been studied to aim to reduce the 

number of exploration steps. Among such approaches, it 

has been reported that transfer learning is especially 

useful and succeeds in achieving efficient reinforcement 

learning by reusing the previously learned action policies 

in similar environments in the target environment [3][4]. 

However, because the similarities among task 

environments are not clearly defined in the framework of 

transfer learning, the similarity is required to be 

calculated in response to each task [5]. If the number of 

the states of a task and the number of agents’ actions are 

a quite a few, the information to be transferred shall be a 

huge amount, and then the calculation shall be so much 

complicated. With respect to this problem, in this paper, 

we employ sparse coding to calculate the similarities 

between the environments of a source task and a target 

task, and determine which and how much action policies 
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are transferred. By this, we aim to make possible to 

efficiently transfer action policies to new target tasks. 

II.  RELATED STUDIES  

This section presents the related studies to our study, in 

particular, the ones focus on transfer learning employed 

in reinforcement learning and also sparse coding 

employed in transfer learning. First, as for the transfer 

learning employed in reinforcement learning, it has been 

successful in generalizing information across multiple 

tasks. Even though between two different tasks, 

transferring the knowledge an agent has learned in a 

source task is useful in a target task [6]. Fernando et al. [3] 

employed Policy Reuse as a technique to improve 

transfer efficiency in reinforcement learning by reusing 

similar policies leaned in a past. The technique improves 

its exploration in target environments by probabilistically 

including the exploitation of those past policies. Then, 

they succeeded to improve the learning performance over 

different strategies with policy reuse, and contributed 

policy reuse as transfer learning among different domains 

[4]. Trung et al. [7] proposed a method to transfer old 

knowledge, and evaluated new options to see if they 

worked better. They succeeded in achieving efficient and 

online transfer, and improved jumpstart and faster 

convergence to near optimum policy. Furthermore, they 

proposed model-based reinforcement learning that 

supports efficient online-learning of the relevant features 

and introduced an online sparse coding learning 

technique for feature selection in high-dimensional 

spaces [8]. Then, they demonstrated practicality of their 

proposed model in both simulated and real robotics 

domains. 

Next, as for sparse coding, sparse coding was 

originally developed to achieve a good result in the field 

of signal processing, i.e., audio and natural images. It can 

approximately represent the input signal expressed by a 

vector with the linear combination of a few bases of the 

vector well [9]. For instance, in the field of image 

processing, Kai et al. [10] presented a method for earning 

image representations using a two-layer sparse coding 

scheme. The algorithm provided excellent results for 

hand-written digit recognition and object recognition, and 

achieved to automatically learn the features of the target. 

In this research, they proposed an approach that accounts 

for high-order dependency among patterns in a local 

image neighborhood. Then, as an example of applying 

Journal of Automation and Control Engineering Vol. 4, No. 4, August 2016

©2016 Journal of Automation and Control Engineering
doi: 10.18178/joace.4.4.324-330

324



sparse coding to transfer learning, Haithman et al. [5][11] 

proposed a novel transfer learning for reinforcement 

learning method capable of autonomously creating an 

inter-task mapping by using a novel combination of 

sparse coding. They succeeded to show not only transfer 

of information between similar tasks, but also between 

two very different domains in their experiments. Then, 

they illustrated that the learned inter-task mapping can be 

successfully used to improve the performance of a 

learned policy, reduce the learning times, and converge 

faster to a near-optimal policy. 

In this study, we propose a novel online transfer 

method making use of sparse coding in reinforcement 

learning, based on those state-of-the-art researches 

mentioned above. 

III. REINFORCEMENT LEARNING AND TRANSFER 

LEARNING 

A. Reinforcement Learning 

The reinforcement learning [1] is a machine learning 

method to obtain optimal action policies by making an 

agent repeatedly search in a target environment. In 

concrete, the learning process is shown as the following 

three steps: 

1. An agent observes the states of an environment. 

2. An agent selects and performs an action among the 

possible actions in the current environment. 

3. The action performed at an environment is evaluated 

by being given reward or a penalty. 

The reinforcement learning is defined as a Markov 

Decision Processes (MDPs), and its state is represented as 

a tuple, <S, A, P, R>. Here, S is a set of states; A is a set 

of actions; P is the transition probability expressed as 

P=Pr{st+1=s’ | st=s, at=a}; and R is reward given to an 

agent from the environment. An agent's action policy is 

expressed as π(s, a)=Pr{at=a | st=s}. The reinforcement 

learning aims to acquire the optimal action policies that 

maximize the total expectation value of the reward given 

from an environment as in (1). 

}|{}|{)( 1

0

ssrEssREsV tkt

k

k

tt  






   (1) 

here, V
π
(s)is called state-value function for policyπ.  

γ indicates the discount ratio. 

B. Q-learning 

We employ Q-learning [14] as a reinforcement 

learning algorithm. It is a kind of Temporal Differential 

learning, and aims to maximize the evaluation value of 

actions, called Q-value. The equation for updating Q-

value is shown in (2).   

  

Q(st,at ) =Q(st,at ) + a(r +g maxaQ(st+1,a) -Q(st,at )) (2) 

here, Q(s,a)=E[R|st=s,at=a], called action-value function, 

which expresses the value obtained from the action a at 

the state s.  αindicates the learning ratio and γ indicates 

the discount ratio. In this study, we employ ε-greedy 

algorithm in deciding agent's action. In the action 

selection by ε-greedy algorithm, the actions are randomly 

selected with the probability of ε, and are selected so as 

maximum Q-value with the probability of 1-ε. 

C. Transfer Learning 

The transfer learning employed in the framework for 

reinforcement learning aims to reduce the number of 

random exploration in a new task. First, we obtain 

knowledge as action policies or Q-values by executing 

reinforcement learning in a source task, and then apply 

the obtained knowledge to a target task. Thereby, the 

efficiency of learning the target task will be improved, 

even if the target task is not the same as the source task. 

However, if the environment of the target task is 

considerably different from that of the source task, the 

transferred knowledge is useless at the target task. So, we 

should correctly choose the knowledge to be transferred 

in accordance with the situation of the target task. 

Therefore, we introduce sparse coding into transfer 

learning. 

IV. SPARSE CODING 

A. Sparse Coding 

In this study, we propose a method to realize efficient 

transfer learning in the framework for reinforcement 

learning by introducing sparse coding [13]. Sparse coding 

is a method of the signal processing. It selects the number 

of the basis vectors as small as possible for a signal, and 

expresses input signal with linear combination of the 

basis vectors. We show an equation representing the idea 

of sparse coding below. 

  

y =Dx                                (3) 

here, y indicates an input signal, D is a set of basis 

vectors called dictionary, and x is an activation matrix  

which indicates a set of coefficient corresponding to each 

of the base. Like this, in sparse coding, y is represented in 

two matrices, D and x. The objective function to be 

optimized for sparse coding is defined in (4). 

   

x* = minx
1

2
y -Dx

2

2
+ l x

1
               (4) 

here, the first right term of (4) indicates the term for 

minimizing the square error between the original 

information y and the restored information Dx, and the 

second term is for regularization which provides a 

constraint on deriving x in a sparse condition. λ is the 

parameter for regularization. By (4), we obtain an optimal 

sparse activation matrix x. 

B. Sparse Coding for Transfer Learning 

Now we explain an overview of how to apply sparse 

coding to transfer learning. In the case of reusing the 

knowledge, i.e., action policies, obtained by 

reinforcement learning in a new target task environment, 

the accuracy of transfer learning will be considerably 

different depending on which pieces of knowledge are 

chosen from a huge quantity of knowledge. Moreover, 

only a part of the whole accumulated knowledge is used 

to search an appropriate action policy for a target task in 

short term, though a huge quantity of knowledge is 
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necessary for the whole transfer. Therefore, it is thought 

that sparse coding works well in transfer learning by 

regarding one piece of knowledge obtained in a source 

task environment as one basic vector of dictionary matrix, 

namely, all accumulated knowledge is regarded as a set 

of basis vectors. Then, by regarding the state s observed 

in a target task as input vector, it can be represented with 

linear combination of knowledge in the dictionary matrix. 

C. Proposed Method 

As seen in Fig. 1, at first, in the target task, the costs of 

the target cell and its surrounding 5-5 square cells are 

observed and compiled as an input vector (step 1). 

Secondary, sparse coding is applied to the input vector 

with the dictionary built by source task, and an activation 

matrix is calculated (step 2). Then, the Q-value obtained 

in the source tasks which corresponds to the index of the 

non-zero elements of the activation matrix is multiplied 

with the value of the non-zero elements of the activation 

matrix (step 3). Lastly, the Q-value calculated in step 3 is 

returned to the current target cell (step4). In this way, in 

the target task, by repeating the above 4 steps and 

sequentially providing the Q-value obtained in the source 

tasks as the value of the target cell, an efficient transfer 

learning is achieved. The detail of this our proposed 

method is described in section V. 

 

Figure 1.  Overview of proposed method. 

V. EXPERIMENTS 

A. Source Task 

At first, in order to construct a dictionary by means of 

sparse cording, we prepared 4 different source tasks (see, 
Fig. 2).We adopted colored mazes as tasks in [14], these 

mazes have 5 different cell colors in themselves, and the 

size of all 4 source tasks are the same, the height is 30 

cells and the width is 30 cells. Each color has its own 

cost: i.e., white: 0.0, blue : -2.0, green : -3.0, red : -5.0, 

and black : -10.0. We regard the cell costs as the reward, 
and +100 is given when an agent arrives at goal. In each 

cell, the agent can select an action among 4 actions, i.e., 

moving 1 cell in either up, down, right, or left direction. 

The task we adopt in our experiments is moving to the 

goal at the right corner of the bottom of the maze from 

the start point at the left corner of the top of the maze. As 

for the parameter settings for Q-learning, α is set as 0.1 

and γ is set as 0.9. Moreover, as the algorithm of 

selecting actions, we employ ε-greedy algorithm in which 

it takes random action with 20% probability and the 

action based on maximum Q-value with 80% probability, 

aiming that the agent can learn action policies to find the 

optimal route to the goal with total cell costs and total 

steps as low as possible. With these settings, the agent 

executed Q-learning and learned the optimal route to the 

goal. We took reinforcement learning for 1000000 

episodes repeatedly on each maze, and after 1000000 

episodes simulation, we recorded the information about 

cost and Q-value of each cell as the knowledge to be used 

for transfer learning. 

B. Construction of a Dictionay Matrix 

As mentioned in V-A, a dictionary matrix is 

constructed based on the information obtained from the 

result of 1000000 episodes Q-learning.  

 

Figure 2.  4 different source tasks. 

We regard the information in 5-5 square cell costs of 

the source tasks as a basis vector in a dictionary and 

extract possible information in 5-5 square cells from 30-

30 square cells. By this, the number of basis vectors in 

each task is 676 (=26*26) and then becomes 2704 in total 

(=676*4 tasks). So, the size of the dictionary matrix 

becomes 25*2704. The image of how to make a 

dictionary is shown in Fig. 3. 

C. Target Task 

As for target tasks, we use the same size square 

colored mazes as the source tasks. As well as the source 

tasks, the start point is at the left corner of the top of the 

maze and the goal point is at the right corner of the 

bottom of the maze (Fig. 4). As explained at step 1 in IV-

C, the agent obtained the cell cost data of the currently 

exploring cell and its 5-5 square surroundings, and 

regarded as an input vector. Then, sparse coding chose 

some environment in 4 source tasks (the bases of the 

dictionary shown in V-B) that are similar to the target 5-5 

square cell cost information, and calculated how similar 

those chosen environment (the results of the activations). 

Next, we extracted the index of non-zero activations from 
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the activation matrix, and the 5-5 cells’ Q-value data 

(gained in V-A) corresponding to that index, is multiplied 

by the corresponding activation values, and lastly took 

these linear combination. In that calculated Q-value data, 

the Q-value data for 4 action policies: up, down, right and 

left, corresponding to the middle cell of 5-5 square was 

extracted, and it returned to the target cell as its Q-value. 

While exploring the target task, if it is the first time for 

the agent to visit the cell, because there is no prior 

knowledge about a proper action at the cell, Q-value is 

transferred through the execution of sparse coding. On 

the other hand, if the agent visits the cell more than twice, 

normal Q-learning is applied to update the Q-value of the 

cell because there already exists prior knowledge about 

actions. 

 

Figure 3. 
 

How to construct a dictionary matrix.
 

D.
 

Experimental Settings
 

In
 
this paper, we examined our proposed method with 

5 different target tasks (see,
 
Fig. 4).

 
In order to show the 

effectiveness
 
of our proposed method, we employed a 

normal Q-learning as a baseline method to compare.
 
The 

Q-learning parameters of the proposed method and the 

base line method are α=0.1,γ=0.9, and ε
 
=0.2 of ε-greedy.

 

We set the total value of the elements in the activation 

matrix to be 10.0 for
 

a sparse coding setting. These 

parameter settings are empirically decided.
 
Fig. 5 shows

 

the relation between bases in
 
the dictionary matrix and 

the elements in the activation matrix
 
at a particular input 

cell when the total value of the elements of the activation 

matrix
 
changes in the range of [0,100].For example,

 
when 

the total activation value gets 40
 
in horizontal axis, we 

see that 3 bases in the dictionary are used to represent the 

input and the sum of the activation values of those 3 

bases gets 40.
 
Fig. 6 shows the result

 
that activation value 

when the total value of activations
 
changed to 1, 10, and

 

50. As seen from this figure, a few bases contain non-

zero value in their activation, other bases have 0 

activation value by
 

sparse coding.
 

Through these 

experiments, we evaluated
 
2 points: how the proposed 

method could reduce the total cell cost and supported
 

jumpstart which means the reduction
 
of number of steps 

necessary to reach
 
the goal.

 

 

Figure 4.  5 different target tasks. 
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Figure 5.  The trace of activations. 
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Figure 6.  The value of activations. 

E. Result 

Fig. 7-Fig. 11 represent the experimental results of the 

number of total steps and the values of total cell costs 

obtained in 5 target tasks. In the experiments, each task is 

repeatedly performed 100 times. In all the figures, the red 

lines indicate the proposed method and the blue lines are 

normal Q-learning. And these figures show the number of 

episodes in the horizontal-axis and the number of total 

steps or the value of total cell costs in the vertical-axis.  
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Figure 7.  The result of target task 1. 

 

Figure 8.  The result of target task 2. 

 

Figure 9.  The result of target task 3. 

 

Figure 10.  The result of target task 4. 

 

Figure 11.  The result of target task 5. 

F. Discussions 

Table I shows the number of total steps and total cell 

costs when the agent first arrived at the goal in 5 target 

tasks. As this table shows, the proposed method could 

decrease the number of necessary steps taken to reach the 

goal. We see clearly from the results that the jumpstart 

was achieved. We also see that the total costs decreased. 

On the whole, the proposed method, which transfers 

the Q-values obtained in the source tasks to the target 

task, was more efficiently than the normal Q-learning that 

learns Q-value of the target task from scratch. However, 

as seen in Fig. 7-Fig. 11, there are some points where the 

proposed method did not work well than the normal Q-

learning, especially in task 3 and 5. As the reason for this, 

it can be thought that the negative transfer has arisen at 

some cells in the target task and then more steps were 

necessary to get recovered from the problem. That also 

led the value of total cell cost to be much worse. 

Depending on task environment, there is some difference 

among the effect of transfer via sparse coding. We have 

verified the assumption that negative transfer happened in 

the target tasks. As clear examples, we focus on the 61
st
 

episode that took the largest number of steps to reach the 

goal and the 2
nd

 episode that took the smallest number of 

steps in target task 5. Fig. 12 shows how many times the 

agent arrived at each cell of target task 5 in the 61
st 

episode. In the figure, the horizontal-axis is the x-

coordinate of the target task5, the depth-axis is the y-

coordinate and vertical-axis is the number of steps at each 

cell. We see that the top left corner of the x-y plane is the 

start point and the front of bottom right corner is the goal 

point. As this graph shows, there are many useless steps 

observed at around the bottom left. Likewise, it is 

observed that the number of steps increased around the 

bottom left in 2
nd 

episode, though the total number of 

steps is considerably lower than that of 61
st
episode (see, 

Fig. 13). 

TABLE I.  THE RESULT OF THE FIRST EPISODE 

  Task1 Task2 Task3 Task4 Task5 

steps 
proposed 208 196 480 166 506 

Q-learinig 5728 7878 5910 5972 13238 

costs 
proposed -125 -196 -476 -157 -208 

Q-learning -10522 -12391 -9783 -9516 -15016 

 

 

Figure 12.  Number of steps in 61st Episode of target task 5. 

 

Figure 13. 
 
Number of steps in 2nd Episode of target task5

 

Among the steps each cell took, the number of steps of 

the cell at (8, 28) in 61
st

 

episode took 516 steps, the 

largest steps in the episode. Therefore, we investigated 

which piece of knowledge was transferred to the cell at (8,  
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28). Fig. 14 shows knowledge transfer happened in the 

cell at (8, 28) of target task 5. The left 5-5 square cell of 

Fig. 14 indicates the cell cost, obtained when the agent 

steps into the cell at (8, 28), which is used as input 

information for sparse coding. In the case of the 5-5 

square, we treat the cost of the bottom row as -100, 

because of the out of search range. Depending on the 

input information, sparse coding is executed. As the 

result of execution of sparse coding, we confirmed that 

100% of the Q-value of the cell at (23, 24) in source task 

3 was transferred to the target cell. However, even though 

compared the left target circumstance to the right source 

circumstance, there is less similar between the two 

environments. It can therefore be thought that the transfer 

was influenced by the cost at the bottom row of the target 

task. In addition, Fig. 15 shows a result of the case where 

the input information for sparse coding does not include 

the cost at the bottom row. Here, the figure shows the 

case where knowledge is transferred to the cell at (10,6) 

of the target task 5. As a result of this case, there were 

several bases employed as the knowledge to be 

transferred. Among the bases, the base of the cell at (23, 

14) in the source task 1 had the largest transfer ratio, 

which was about 55.8%. In this example, we see that the 

transferred Q-value was successfully represented as linear 

combination of the Q-values of several bases. To consider 

the difference between these two transfers, because there 

were lack of the bases which correspond to the out of 

range, that led transfer accuracy to get worse. In this 

study, we think if the bases including the out of range 

cost, the influence by those bases might cause imbalance 

knowledge transfer, so, we did not take those bases in the 

dictionary. Thereby, we think the reason why knowledge 

transfer did not work well at some points as the 

dictionary was not well prepared. 

 
Figure 14.  Bad transfer. 

 

Figure 15.  Good transfer. 

VI. CONCLUSIONS 
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