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Abstract—This paper develops a generalized adaptive fuzzy 

control scheme for MIMO nonlinear second order systems. 

Here, the example robotic manipulators is used to illustrate 

the control algorithm. The controller for each degree of 

freedom (DOF) consists of a feedback fuzzy PD systems 

used to keep the closed-loop stable. The rule base consists of 

only four rules per each DOF. Furthermore, the fuzzy 

feedback system is decentralized and simplified leading to a 

computationally efficient control scheme. The proposed 

control scheme has the following advantages: 1) it needs no 

exact dynamics of the system and the computation is time-

saving because of the simple structure of the fuzzy systems; 

and 2) the controller is robust against various uncertainties. 

The computational complexity of the proposed control 

scheme has been analyzed and compared with previous 

works. Computer simulations show that this controller is 

effective in achieving the control goals.  

 

Index Terms—robot manipulators, fuzzy pd feedback 

control, closed-loop stability, computational complexity 

 

I. INTRODUCTION 

Generally speaking, multiple-input multiple-output 

(MIMO) systems usually have characteristics of 

nonlinear dynamics coupling. Therefore, the difficulty in 

controlling MIMO systems is how to overcome the 

coupling effects between the degrees of freedom. The 

computational burden and dynamic uncertainty associated 

with MIMO systems make model-based decoupling 

impractical for real-time control. 

Adaptive control has been studied for many decades to 

deal with constant or slowly changing unknown 

parameters. Applications include manipulators, ship 

steering, aircraft control and process control. Although 

the perfect knowledge of the inertia parameters can be 

relaxed via adaptive technique, its real practical 

usefulness is not really clear and the obtained controllers 

may be too complicated to be easily implemented, [1]. 

Also, because of many design parameters, like learning 

rates and initialization of the parameters to be adapted, 

etc., most existing methodologies have limitations. 

Moreover, owing to the different characteristics among 

design parameters, attaining a complete learning, while 

considering an overall performance goal, is an extremely 

difficult task, [2] 
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Fuzzy controllers have demonstrated excellent 

robustness in both simulations and real-life applications. 

However, it has been proved that standard fuzzy logic 

controllers are not suitable for loop controllers, [3]. This 

fact is referred to that there are many tuning parameters 

in membership functions and control rules. Furthermore, 

standard fuzzy logic controller has a long computation 

time since it performs fuzzification, inference, and 

defuzzification processes in determining control inputs. 

Thus, it is difficult for control inputs of standard fuzzy 

logic control to be computed within the sampling time of 

a loop controller. For this reason, complexity reduction of 

fuzzy feedback controllers was the topic of many 

researchers; for instance see [4]. 

In this paper, we focus on the design of an adaptive 

fuzzy feedback controller based on the Lyapunov 

synthesis. Only four rules constitute the rule base for each 

DOF. Furthermore, the fuzzy feedback controller is 

decentralized and simplified leading to a computationally 

efficient adaptive fuzzy control scheme. To demonstrate 

the proposed approach, we use the example of robotics 

because it is a well-known example of nonlinear MIMO 

second order systems. 

The paper is outlined as follows: in Section 2, the robot 

model and the nominal value of its parameter are 

introduced. This model is used to generate simulation 

data instead of experimental data from real robot platform. 

In Section 3, the fuzzy feedback controller is derived 

based on the Lyapunov direct method. Furthermore, the 

controller is simplified, i.e. it has a closed form 

mathematical relation with only three parameters need to 

be tuned and the controller gain is adaptively determined 

on-line so as to minimize a performance index. Section 4 

discusses the computational complexity of the proposed 

control scheme in comparison with previous works. 

Simulation results are demonstrated in Section 5. Finally, 

some concluding remarks are given in Section 6. 

II. ROBOT MODELING AND THE CONTROL STATEMENT 

Without the loss of generality, we take the two-link 

rigid robot shown in Fig. 1, as an example to demonstrate 

the proposed control scheme. The inverse dynamic model 

is expressed as: 

)(),()(  GCMu                  (1) 
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where 
nR  is the joint angular position vector of the 

robot; 
nRu  is the vector of applied joint torques (or 

forces); 
nnRM )(  is the inertia matrix, positive 

definite; 
nRC  ),(  is the effect of Coriolis and 

centrifugal torques; and 
nRG )(  is the gravitational 

torques. The physical properties of the above model (1) 

can be found in [5]; however, they are not needed here.  
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Figure 1. An articulated two-link manipulator.  

For the robot shown in Fig. 1, (1) can be rewritten as:  
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where 

)sin(2)cos(2 2423111  aaaM  , 222 aM  , 

)sin()cos( 242321221  aaaMM  , 

)cos()sin( 2423  aah 
 

)cos()cos( 212111   bbG , 

)cos( 2122   bG  

With 

2

1

22

1111 lmlmIlmIa eceeec  , 2

2 ceee lmIa  , 

)cos(13 ecee llma  , )sin(14 ecee llma 
 

1111 glmglmb ec  , .2 ceeglmb 

 
The nominal parameters of the two-link manipulator 

are chosen as follows:  

kgm  51  , kgme  5.2 , ml  0.11  , mlc  5.01   

mlce  5.0 , 030e , 
2

1  36.0 kgmI  , 2 24.0 kgmIe   

Position control, or also the so-called regulation 

problem is one of the most relevant issues in the 

operation of robot manipulators. This is a particular case 

of the motion control or trajectory control. The primary 

goal of motion control in joint space is to make the robot 

joints track a given time-varying desired joint position, 
Tddd ],[ 21   .  

Several control architectures related to robot control 

can be found in literature ranging from the simple PD, 

learning based, adaptive, and adaptive/learning hybrid 

controllers. The reader is referred to [6], [7] and the 

references included. The main advantage of the PD 

controller is that it can easily be implemented on simple 

microcontroller architectures. On the other hand, the 

performance obtained from PD controllers is not 

satisfying for most of the sensitive applications [7]. 

III. DECENTERALIZED ADAPTIVE FUZZY CONTROL 

The performance of any fuzzy logic controller is 

greatly dependent on its inference rules. In most cases, 

the closed-loop control performance and stability are 

enhanced if more rules are added to the rule base of the 

fuzzy controller. However, a large set of rules requires 

more on-line computational time and more parameters 

need to be adjusted. Adjustment of the fuzzy system may 

be achieved using GAs [8]. However, GAs cannot be 

used on-line and perfect mathematical model or 

experimental data should be available. In this Section, a 

robust adaptive PD-type fuzzy feedback controller is 

driven for a class of MIMO second order nonlinear 

systems. 

A. Construction of Fuzzy Feedback Controllers 

In this Sub-section we apply the fuzzy synthesis to the 

design of stable controllers. To this end, consider a class 

of MIMO nonlinear second order systems whose dynamic 

equation can be expressed as:  

),,()( uxxftx                            (2) 

where ),,( uxxf   is an unknown continuous function, u  

is the feedback control input and T

nxxxtx ],,,[)( 21   is 

the state vector and T

21 ],...,,[ nxxx
dt

dx
x   . We now seek a 

smooth Lyapunov function nn RRV :  for the 

continuous feedback model (1) that is positive definite, 

i.e. 0)( xV  when 0x  and 0)( xV  when 0x , and 

grows to infinity: )(xV  as xxT . Obviously, 

this holds for a generalized Lyapunov candidate function 

of the following quadratic form:  

xxxxtxV TT 
2

1

2

1
),(              (3) 

Differentiating (3) with respect to time gives  

nnnn xxxxxxxxxxxxtxV   22112211),(

from which 

)()()(),( 22221111 nnnn xxxxxxxxxxxxtxV    

This is equal to 

nVVVtxV   21),(           (4) 
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where 

nixxxxtxV iiiii  ,2,1        ,),(   

Then the standard results in Lyapunov stability theory 

imply that the dynamic system (2) has a stable 

equilibrium exx   if each iV  in (4) is 0  along the 

system trajectories. To achieve this, we have chosen the 

control )(xui
 to be proportional to ix .  

Next, our controller design is achieved if we determine 

a fuzzy control )(xu
iFB

 so that:  

nixuxxxtxV iiiiii  ,2,1        ,0)(),(     (5) 

where i  is a positive constant. The results of Wang [9] 

state that, a fuzzy system that would approximate (5) 

exists. To this end, one would consider the state vector 

)(tx  and )(tx  to be the inputs to the fuzzy system. The 

output of the fuzzy system is the feedback control iu . A 

possible form of the control rules is: 

IF ix  is (lv) and/or ix  is (lv)  

THEN iu  is (lv),          ni ,2,1  

where the (lv) are linguistic values (e.g. positive, 

negative). These rules constitute the rule base for a 

Mamdani-type fuzzy controller.  

In the above formulation, two basic assumptions have 

been made. They are: 

 The knowledge of the state vector. It is assumed to 

be available from measurements. 

 The control input, u  is proportional to x . This 

assumption can be justified for a large class of 

second order nonlinear mechanical systems, [10]. 

For instance, here in robotics, it means that the 

acceleration of links is proportional to the input 

torque.  

These two assumptions represent the basic knowledge 

about the system which is needed to derive the control 

rules. Clearly, the exact mathematical model is not 

needed.  

B. Adaptive Fuzzy Feedback Control Design 

Robots are familiar examples of trajectory-following 

mechanical systems. Their nonlinearities and strong 

coupling of the robot dynamics present a challenging 

control problem. In practice, the load may vary while 

performing different tasks, the friction coefficients may 

change in different configurations and some neglected 

nonlinearities as backlash may appear. Therefore, the 

control objective is to design a stable fuzzy controller so 

that the link movement follows the desired trajectory in 

spite of such effects.  

Consider a class of robots whose vector of generalized 

coordinates is denoted by  Tn 21
   where i , 

ni ,,1  are the joint parameters. We consider the state 

variables of the robot as )(t
 
and )(t , which are 

usually available as feedback signals. Define the tracking 

error vectors 
)(te

 and 
)(te

 as:  

)()()( ttte d  , and )()()( ttte d         (6) 

where 
d  and 

d  are vectors of the desired joint 

position and velocity, respectively. We now apply the 

approach presented in the previous Sub-section in order 

to find a fuzzy controller that achieves tracking to the 

robotic system under consideration. To this end, let us 

choose the following Lyapunov function candidate 

)(
2

1
eeeeV TT                          (7) 

Differentiating with respect to time and using (4) gives 

iiiii eeeeV    

To enforce asymptotic stability, it is required to find u  

so that 

0 iiiii eeeeV                        (8) 

In some neighborhood of the equilibrium of (7). 

Taking the control u  to be proportional to e , Eqn (8) 

can be rewritten as:  

0 
iFBiiiii ueeeV                   (9) 

where i  is positive constant, ni ,,1 . Sufficient 

conditions for (9) to hold can be stated as follows.  

 if, for each ],,1[ ni  , ie  and ie  have opposite 

signs and iiu  is zero, inequality (9) holds;  

 if ie  and ie  are both positive, then (9) will hold if 

iiu  is negative; and  

 if ie  and ie  are both negative, then (9) will hold if 

iiu  is positive. ],,1[ ni   denotes the joint 

number.  

Using these observations and assuming that i  is 

positive small number, one can easily obtain the four 

rules listed below in Table I.  

TABLE I. FUZZY RULES FOR THE FUZZY FEEDBACK CONTROLLER 

P N

P

N
ie

ie

Nu

PuZu

Zu ni ,1

 

In this Table, P, N, denote respectively positive, 

negative errors; Pu , Nu  and Zu  are respectively positive, 

negative and zero control inputs. These rules are simply 

the fuzzy partitions of ie , ie
 
and iu

 
which follow 

directly from the stabilizing conditions
 
of the Lyapunov 

function, (7).
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In concluding words, the presented approach 

transforms classical Lyapunov synthesis from the world 

of exact mathematical quantities to the world of words 

[10]. This combination provides us with a solid analytical 

basis from which the rules are obtained and justified. 

Relative to other works, this number of rules is quite 

small. For example, in [11], the rule base of a two-link 

robot consists of 625 rules. After introducing a rule base 

reduction approach, the authors in [11] reach to a rule 

base consists of 160 rules, which is hard to be 

implemented.  

To complete the design, we must specify the fuzzy 

system with which the fuzzy feedback computes the 

control signal. The Gaussian membership defining the 

linguistic terms in the rule base is chosen as follows:  

2)(
),()( zax

zpositive eaxGx


  

),()( znegative axGx   

)0,()( xGxzero   

where 
0za

 and z  stands for control variable, the 

product for “and” and center of gravity inferencing. For 

some positive constant ik
, 

],,1[ ni 
 denotes the joint 

number, the above four rules can be represented by the 

following mathematical expression:  

),(),(

))(,())(,(
                             

),(),(

))(,())(,(

22

22

11

11

iiii

iiiiii

iiii

iiiiii
i

aeGaeG

kaeGkaeG

aeGaeG

kaeGkaeG
u














 

This yields the fuzzy feedback controller  

)]2(tanh)2(tanh[ 21 iiiiii eaeaku  ,    ni ,,1   (10) 

In (10), the inputs are the error in position ie  and the 

error in velocity ie  and the output is the control input of 

joint i; i.e. it is a PD-type fuzzy feedback controller. The 

following remarks are in order:  

 The fuzzy controller in (10) is a special case of 

fuzzy systems, where Gaussian membership 

functions are used to introduce the input variables 

( ie  and ie ) to the fuzzy network. Also, the 

fuzzification and defuzzification methods used in 

this study are not unique; see [10] for other 

alternatives. For example, using different 

membership functions (e.g. triangular, trapezoidal 

etc.) will result in a different fuzzy controller. 

However, the controller in (10) is a simple one and 

the closed form relation between the inputs and 

the output makes it computationally inexpensive.  

 Only three parameters per each DOF need to be 

tuned, namely, they are ik , ia1  and ia2 . This 

greatly simplifies the tuning procedure; since the 

search space is quite small relative to other works. 

For instance, the fuzzy controller in [12] needs 45 

parameters to be tuned for a one DOF system.  

 This controller is inherently bounded since 

1)(tanh x .  

Finally, the fuzzy PD gain, i.e. ik , ],,1[ ni   is 

chosen so as to minimize the following quadratic 

performance index:  

 2)]([
2

1
kurJ iii                            (11) 

where input ir  is a constant. According to the gradient 

method, the learning algorithm of the parameter ik  in the 

feedback fuzzy controller (10) can be derived as follows:  

)]2tanh()2[tanh(       21 iiiiii

ii

ii

i

i
i

ececur

ku

uJ

k

J
k













(12) 

Thus, the fuzzy feedback controller uses the ie , ie  and 

iu  to compute (12) and update the control gain ik  given 

that .0)0( ik  The overall closed-loop control system is 

shown in Fig. 2.  

Fuzzy Feedback 

controller (10)

d

i

d

i  ,
ii  ,

Robot link i
_

ii ee ,

The update law 

(12)

iu

 

Figure 2. Configuration of the proposed decentralized fuzzy control 
scheme of joint i.  

IV. COMPUTATIONAL ASPECTS 

In general, control algorithms for closed loop control 

should require short computation time due to limited 

memory of low-cost microprocessors. This Section 

discusses the computational complexity of the feedback 

controller and compares it with that of a self-tuning fuzzy 

controller proposed in [13]. It is shown that the proposed 

control scheme is computationally very efficient.  

Naturally, the computational burden can be evaluated 

in terms of required mathematical multiplication and 

addition operations. The computation of the fuzzy 

feedback controller can be divided into two parts: 

computation of (10) and computation of the adaptive gain; 

ik , (12). For the sake of comparison, Table II 
demonstrates the computational complexity of our 

scheme with the self-tuning fuzzy controller proposed in 

[13]. The comparison is fair since the feedback controller 

in [13] is essentially a PD fuzzy controller with self-

tuning mechanism. In [13], the rule base has been 

transformed to a decision table and is used by a back-

propagation algorithm to adjust the scaling factors of the 

fuzzy system. The difference resides in the fact that the 

rule base in [13] consists of 49 rules for one DOF system 

and the mapped elements ( e  and e ) are obtained by 

interpolation. Furthermore, the tuning procedure is 
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composed of two stages and some learning steps are 

needed by the second stage, while the tuning system 

using (12) is much simpler. Simulation results, in the 

coming Section, show that it is also efficient.  

TABLE II. COMPUTATIONAL COMPLEXITY OF THE FUZZY FEEDBACK 

CONTROLLER  

 Self-tuning fuzzy 
controller [13]  

The proposed 
fuzzy controller 

Addition 97n 6n 

Multiplication 113n 15n 

V. SIMULATION RESULTS 

The purpose of the simulation is to investigate the 

robustness of the proposed control scheme. The robot 

system considered in the simulation is the two-link robot 

presented in Section 2. Through the simulations, the 

physical insight of the behavior is revealed. In the coming 

results, it is assumed that )1(5.01

td e  , 

)1(2

td e  and initial positions of joints 

rad 15/)0()0( 21   , which are equivalent to the 

initial position errors, since the desired positions are 

0)0()0( 21  dd  . Also, the robot is initialized at rest, i.e. 

the initial velocities of joints sec/
 

0)0()0( 21 rado 
. 

This initialization imposes a large initial velocity error 

since ,2/)0(1 e
 

sec/ )0(2 rade  . The input 

torque has been saturated to mNuu .
 

300, 21  . With 

these initialization conditions, one can expect uneasy 

transient stage. 
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Figure 5.

 
Record of the

 
adaptive control gains during motion. 

 

The input torques are shown in Fig. 3 and Fig. 4 shows 

the evolution of the tracking errors. They show that the 

errors have converged to zero. Note that the transient 

period is less than 0.5 seconds. Otherwise, it is interesting 

to notice how the control gains evolve with time. Fig.
 
5 

depicts the evolution of these parameters with time. They 

have been initialized as mNk .
 

600)0(1 
 
and

 
mNk .

 
275)0(2  . 

 In order to observe how the controller behaves in the
 presence of various uncertainties, two types of 

uncertainties are considered, namely, unmodeled 

nonlinear friction and unknown payloads. 
 

A.
 

Unmodeled Friction
 

At the off-line training stage of our simulation, we 

obtain the training samples from the robot model in (1), 

which does not consider the nonlinear friction. In order to 

examine the performance of the controller in the presence 

of unmodeled nonlinear friction, the following 

unmodeled nonlinear friction is added at the control stage: 
 

sd FFF 
 

where dF
 
and sF

 
are the dynamic and static friction 

torques, respectively. They can be expressed by: 
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We use 30 ,50 21  dd
 
and 12 ,18 21  cc . Results 

are shown in Fig. 6 and
 
Fig.

 
7. It can be noticed that the 

transient period has increased relative to the cases when 

the friction was not considered. Also the input torques is 

relatively higher during this period. Nevertheless, 

convergence of the tracking errors has been achieved. 
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Figure 6.

 
The tracking errors

 
in the presence of unmodeled friction. 
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Figure 3. The control effort. 
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Figure 7. The control input in the presence of unmodeled friction.  

B. Unknown Payload 

In robot systems, the unknown payload is one of the 

major dynamic uncertainties. Compared with the 

parameter uncertainties and unmodeled friction, the 

influence of unknown payload is much greater. The 

coming results are obtained when the mass and inertia of 

the base and elbow links (carrying the payload) have been 

increased to 150%. This increase in the mass and inertia 

of the two links is supposed to be unknown. Fig. 8 shows 

that input torque is relatively high. Also, the tracking 

errors exhibit larger overshoot during the transient period, 

Fig. 9. However, convergence of errors to a narrow 

region close to zero has taken place.  
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Figure 8.
 

The input torques when the payload
 
increases to 150%. 
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Figure 9.
 

The
 
tracking errors in the presence of 150% increase in the 

payload. 
 

VI. CONCLUSIONS 

In this paper, a decentralized adaptive fuzzy control 

scheme for second order systems has developed. 

Simulation results for robot manipulator show that the 

proposed control scheme works well, even if the ideal 

model is not in concordance with the real inverse 

dynamics. An important feature of this study is that it has 

transferred the proposed fuzzy feedback controller to a 

closed-form relation between the inputs and the output, 

leading to a computationally efficient adaptive fuzzy 

logic controller. The rule base consists of only four rules 

and has a PD-like structure. The gains are tuned on-line 

based on the gradient method. This feedback controller is 

inherently bounded; the upper and lower bounds can be 

arbitrary selected by suitably adjust its parameters. 

Finally, it can be concluded that using the proposed 

control approach presents a convenient option for 

controlling a large class of nonlinear MIMO second order 

systems.  

ACKNOWLEDGMENT 

This work was supported by a grant from the 

Ecuadorian Government, SENESCYT.  

REFERENCES 

[1] S. Tong, S. Sui, and Y. Li, “Adaptive fuzzy decentralized tracking 

fault-tolerant control for stochastic nonlinear large-scale systems 

with unmodeled dynamics,” Information Sciences, vol. 289, pp. 

225–240, 2014.  
[2] S. Tong, Y. Li, Y. Li, and Y. Liu, “Observer-based adaptive fuzzy 

backstepping control for a class of stochastic nonlinear strict-

feedback systems,” IEEE Trans. on Systems, Man, and 
Cybernetics—Part b: Cybernetics, vol. 41, no. 6, pp. 1693-1704, 

December, 2011.  
[3] M. Margaloit and G. Langholz, “Fuzzy control of a benchmark 

problem: Computing with words approach,” IEEE Trans. on Fuzzy 

Systems, vol. 12, no. 2, pp. 230-235, 2004,.  
[4] Y. H. Kim, S. C. Ahn, and W. H. Kwon, “Computational 

complexity of general fuzzy logic control and its simplification for 

a loop controller,” Fuzzy Sets and Systems, vol. 111, pp. 215-224, 
2000.  

[5] T. Hseng, S. Li, and Y. C. Huang, “MIMO adaptive fuzzy 
terminal sliding-mode controller for robotic manipulators,” 

Information Sciences, vol. 180, pp. 4641-4660, 2010.  

[6] S. Liuzzo and P. Tomei “A global adaptive learning control for 

robotic manipulators,” Automatica, vol. 44, pp. 1379-1384, 2008.  

[7] S. Yamacli and H. Canbolat, “Simulation of a SCARA robot with 
PD and learning controllers,” Simulation Modelling Practice and 

Theory, vol. 16, pp. 1477-1487, 2008.  

[8] A. B. Sharkawy, “Genetic fuzzy self-tuning PID controllers for 
antilock braking systems,” Engineering Applications of Artificial 

Intelligence, vol. 23, no. 7, pp. 1041-1052, 2010. 
[9] L. X. Wang, A Course in Fuzzy Systems and Control, Upper 

Saddle River, NJ: Prentice-Hall, ch. 4, 1997, pp. 76-81.  

[10] L. A. Zadeh, “Fuzzy logic = computing with words,” IEEE Trans. 
Fuzzy Systems, vol. 4, no. 2, pp. 103-111, 1996.  

[11] H. Bezine, N. Derbel, and A. M. Alimi, “Fuzzy control of robot 

manipulators: Some issues on design and rule base size 
reduction,” Engineering Applications of Artificial Intelligence, vol. 

15, pp. 401-416, 2002. 
[12] T. L. Seng, M. Khalid, and R. Yusof, “Tuning of a neuro-fuzzy 

controller by genetic algorithm,” IEEE Transaction on Systems, 

Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 2, pp. 

226-239, April, 1999.  

[13] C. T. Chao and C. C. Teng, “A PD-like self-tuning fuzzy controller 
without steady-state error,” Fuzzy Sets and Systems, vol. 87, pp. 

141-154, 1997.  

Journal of Automation and Control Engineering Vol. 4, No. 3, June 2016

©2016 Journal of Automation and Control Engineering 218



 
 

 

 

Abdel Badie Sharkawy

 

was born in Assiut 

Egypt on December 4th, 1958 and got PhD in 
Robotic Control in 1999 from

 

the Slovak 

Technical University in Bratislava, Slovakia. 

The major area of interest

 

are modeling and 
control using intelligent systems. He was a 

senior lecturer within the department of 
mechatronics engineering, the Hashemite 

University, Jordan for three years (2001-2004) 

and within the electrical engineering 
department, Al-Tahady University, Sirte, Libya 

 

during the fall semester, 2005. He was a professor at mechanical 

engineering department, Assiut University, Egypt (April 2012-

 

July 

2014). Now, he is a visiting professor (Prometeo Program) in the 

Faculty of Electrical and Computer Engineering, ESPOL, Guayaquil, 

Ecuador. His research interests include adaptive fuzzy identification and 
control, automotive control systems, robotics (modeling and control), 

and the use of neural networks in the control of mechanical systems. 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

Douglas A. Plaza born in Guayaquil, Ecuador 
on 10th June 1977. He obtained his Ph.D. 

degree in Electromechanical Engineering from 

Ghent University, Ghent, Belgium

 

in 2013

 

and 
a master degree in Industrial Control 

Engineering from Universidad de Ibague, 
Ibague, Colombia

 

in 2008.

 

Currently, he is a 

lecturer of control theory associated to the 

Faculty of Electrical and Computing 
Engineering at Escuela Superior Politecnica del 

 

Litoral ESPOL. His research interests include: Kalman filtering, 
sequential Monte Carlo methods, model predictive control and non-

linear control.

 

 
 

Daniel E. Ochoa

 

was born in Guayaquil-
Ecuador on October 17th, 1975. He was 

awarded an Computer Engineering degree at 

Escuela Superior Politécnica del Litoral 
(ESPOL), Guayaquil-Ecuador in 2000 and a 

PhD in Computer Science in 2011 at Gent 
University in Gent-Belgium.

 

His interest are 

computer vision and robotics.

 

He worked as 

research assistant at IPI group in Gent 
University and currently he is the head of the 

 

Computer Vision and Robotic center at ESPOL where he also works as 
a professor since 2013.

 

He has published several indexed publications 

and has been reviewer of national and international scientific journals. 

Most of his research work has been done in biological image analysis. 
He is a founding

 

member and head of the robotic and intelligent systems 

network of Ecuador.

 
 

 

 
 

 

 
 

Journal of Automation and Control Engineering Vol. 4, No. 3, June 2016

©2016 Journal of Automation and Control Engineering 219




