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Abstract—Nowadays, the number of cores in a micro-

processor used for automotive embedded systems are 

trending to be increased from tens (multi) to hundreds 

(many) of cores to achieve higher performance. Developing 

many-core architectures with high-performance and low-

power is becoming a major technical challenge. In this 

paper, we propose a solution to develop the many-core 

architecture by using many low-performance but small and 

very low-power cores to obtain very high performance and 

efficient parallel processing. The many-core evaluation 

platform is implemented on FPGA utilizing multiple mass-

produced evaluation boards, which can result to several 

advantages such as low cost of development, flexibility and 

easy implementation as compared to that of manufacturing 

in a real LSI chip. In addition, some evaluation results of 

parallel benchmark programs conducted on our developed 

platform are also presented and discussed. 
 

Index Terms—many-core architecture, evaluation platform, 

network-on-chip, parallel benchmark, FPGA 

 

I. INTRODUCTION 

Over the last ten years, automotive embedded systems 

have taken a leap in engineering. The amount of digital 

information a car has to compute in real-time is growing 

exponentially. Multiple tasks/operations on a car such as 

powertrain and chassis control (engine, steering, 

brake …), body electronics (instrument panel, lighting, 

air bag …), multimedia applications (car navigation, 

traffic information, electronic toll collection …) as well 

as integrated services (electronic stability control, pre-

crash safety, parking assistance …) are required to be 

processed in parallel with high reliability and safety. 

To meet above-mentioned requirements, lots of multi-

core architectures of micro-processor with tens to 

hundreds of processor cores on a single chip has been 

proposed and developed for automotive embedded 

systems. In advance, a prospect of many-core architecture 

which consists of hundreds to thousands of cores is being 

expected for higher performance. Therefore, developing 

many-core architectures and compiler techniques to 

realize a high performance and low power many-core 

processor used in automotive engineering is becoming a 

major technical challenge. 

Up to now, many multi/many-core processor 

architecture and compilers are researched and developed 
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for the system-on-a-chip designs. A multi-core processor 

named OSCAR and its automatic parallelization compiler 

is introduced in [1] and [2]. Besides, an actual multi-core 

chip with the ability of reducing power consumption by 

an automatic parallelizing compiler is also developed [3]. 

A coherence control mechanism by compiler for many-

core processors is proposed in [4]. However, these 

architectures do not adopt a NoC-based structure which is 

a very significant aspect of many-core processors. In 

practice, it is hard to extend to hundreds of cores in such 

a bus-based architecture. 

Thanks to the advance of technology, nowadays, many 

experimental products as well as commercial products of 

the NoC-based many-core processor with several tens to 

hundreds of cores are becoming practical. In 2008, Intel 

Inc. has introduced a processor with 80 cores for 

experiment, which one tera FLOPS or more can be 

achieved [5]. The floating point cores in this processor 

are built in the 8x10 two-dimensional mesh network. In 

2010, a many-core processor called ATAC [6] built from 

1024 cores that can provide a high-speed global 

broadcasting network using an on-chip optical network is 

proposed. A scalable directory-based cache coherence 

protocol called ACKwise using the optical network is 

developed for improving ATAC processor performance. 

At the same time, the TILE64 of Tilera Inc. [7] has been 

provided as a commercial many-core processor. In 

TILE64, 8x8 homogeneous cores are organized in a mesh 

on-chip network called iMesh. 

Since these processors are implemented in the real LSI 

chips, they require very high cost of development and 

implementation. Moreover, once the actual chips are 

fabricated, it is impossible to change hardware 

parameters such as the memory access latency, the 

number of cache misses etc. In addition, in case of 

changing the number of cores, another LSI die is required 

to be mounted. 

In our research, we propose a solution to develop the 

many-core architecture by using many low-performance 

but small and very low-power cores to obtain very high 

performance and efficient parallel processing. Our goal is 

to realize a low-power cost effective embedded processor 

as an alternative for the current system-on-a-chip designs 

in automotive area. 

Generally, in order to research many-core architectures, 

developing an evaluation platform is very important. 

Usually, software simulators can be used for architecture 
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researches. Though the software simulators are flexible 

and easy to use, the scalability is not sufficient. 

Simulation for a many-core processor with hundreds of 

cores takes very long time and is not realistic. On the 

other hand, the emulation of many-core processor with 

FPGAs is fairly practical because of its evaluation speed 

and scalability. 

In this paper, we introduce a solution of developing a 

many-core evaluation platform using multiple mass-

produced FPGA evaluation boards, which can result to 

several advantages such as low cost of development, 

flexibility and easy implementation as compared to that 

of manufacturing in a real LSI chip. In addition, several 

initial experiments with parallel benchmark programs on 

our developed platform are also discussed. 

The remainder of paper is organized as follows. 

Section II describes the detail of our proposed many-core 

architecture. The construction of evaluation platform 

developed on FPGA is presented in Section III. Some 

initial benchmark evaluation results are discussed in 

Section IV. Finally, Section V concludes the paper. 

II. PROPOSED MANY-CORE ARCHITECTURE 

The block diagram of our proposed many-core 

architecture is shown in Fig. 1. In this architecture, 

multiple blocks called clusters are organized in a two-

dimensional array and connected by a two-dimensional 

mesh on-chip network (NoC). Each cluster is composed 

of a number of scalar processor cores (for example, 8 

cores as in Fig. 1) which are combined by a bus 

connection. Each core has a dedicated L1 instruction 

cache (IL1) and an L1 data cache (DL1). An L2 cache is 

provided for each cluster and shared by all cores in the 

chip.  

 

Figure 1.  Proposed many-core architecture. 

In this architecture, we use a simple scalar processor 

core based on the MIPS32 architecture [8]. The processor 

core is designed to allow launching an operating system 

such as the Linux. This processor core consists of a 

simple 5-stage pipeline, 8KB L1 instruction and L1 data 

caches, and a 16-entry TLB (Translation Look-aside 

Buffer) which can be controlled by instructions. The data 

cache employs the write-back policy.  

A. Cluster Organization 

Our proposed many-core architecture is constructed by 

two types of clusters: a core cluster with a number of the 

above-mentioned processor cores, and a peripheral 

cluster which allows to interface with the external 

devices. In the core cluster, multiple simple scalar 

processor cores are connected through a cluster bus. A 

router for the network-on-chip is also connected to this 

bus. A peripheral cluster consists of several controllers 

for SDRAMs, external I/Os, and a router. The access to 

the main memory and I/O devices is ensured by the 

packet-based data transfer, which is performed between 

the core cluster and the peripheral cluster through an on-

chip network. 

B. Network-on-Chip 

Core clusters and peripheral clusters are connected by 

a two-dimensional mesh network-on-chip which is 

formed out of virtual channel routers. The packet-

switching mechanism is utilized for data transfer in the 

network. The two-dimensional mesh network is adopted 

for connection between clusters because of its scalability, 

effective communication locality, as well as extendability. 

The XY routing algorithm is adopted for guaranteeing 

deadlock-free routing, and the iSLIP scheduling 

algorithm is employed for the switch allocation due to its 

high performance, flexibility and no starvation [9]. 

For data transfer, the virtual-channel flow control [10] 

is used. The packets are divided into multiple flits (flow 

control digits) where a two-flit header (i.e. the header 

includes two flits) contains all necessary information for 

routing and memory access including a route for the next 

hop (the channel selection signal for the succeeding 

router), a cluster ID, a core ID, and memory access 

controls (read/write, non-burst/burst, etc.). The other flits 

of the packet carry payload data. The format of a two-flit 

header is illustrated in Fig. 2, where FID and VCID 

indicate the flit ID and virtual channel ID, respectively. 

As shown in the figure, each cluster is distinguished by a 

unique cluster ID, and each core within a cluster can be 

identified by a core ID. 

 

Figure 2.  Two-flit header description. 

To form the on-chip network, we utilize a low cost 

single-cycle router [11], which is an enhanced design of 

the conventional virtual channel (VC) router architecture. 

This router can perform high performance data transfer in 

a single cycle with low hardware cost which is able to 

contribute to energy-efficiency. 

The block diagram of the router used in our many-core 

architecture is shown in Fig. 3. The router has five bi-

directional ports named as North (N), South (S), East (E), 

West (W), and Local (L) for communicating with the 

neighboring routers and its cluster bus, with data bit-

width of 32-bit and two virtual channels in each port. 
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Figure 3.  Single-cycle router architecture. 

III. MANY-CORE ARCITECTURE IMPLEMENTATION ON 

FPGA 

In development and verification of architectures and 

software for many-core processors, the evaluation 

platform plays a very important role. Lots of software 

simulators have been used for many-core architecture 

research and exploration. However, the issue of a quite 

long time of simulation for hundreds of cores is becoming 

a critical. An alternative to the software simulator which 

can overcome the above problem is an emulator 

implemented on FPGA. The solution of using FGPA 

allows to improve the speed of evaluation considerably as 

compared to that of software simulators, while still 

maintaining an acceptable cost of development. In 

addition, it is not difficult to develop additional hardware 

modules at register transfer level (RTL) to extend the 

evaluation environment. 

 

Figure 4. 
 

ML605 evaluation board.
 

For the mentioned-above remarkable advantages, we 

decided to choose the solution of using FPGA for the 

implementation of our many-core evaluation platform. 

The Xilinx ML605 evaluation board (Fig. 4) which has a 

Virtex-6 FPGA device, an
 

SDRAM, and several I/O 

interfaces such
 
as UART, SysACE, etc. is used as a basic 

component for our platform. The
 

specifications of the 

ML605 evaluation board and Virtex-6 device are 

summarized in
 

Table I. We use Verilog-HDL for the 

circuit design and the Xilinx ISE for
 
the Verilog-HDL 

simulation and implementation to the FPGA.
 

TABLE I.  SPECIFICATIONS OF ML605 EVALUATION BOARD AND 

VIRTEX-6 CHIP 

ML605 evaluation board 

FPGA device 
SDRAM 

I/O ports 

Clocks 

 

Virtex-6 XC6VLX240T 
DDR3 SO-DIMM 

GTX, UART, SMA, etc. 

200 MHz & 66 MHz 

Virtex-6 (XC6VLX240T) 

Technology 

Logic Cells 

CLB Slices 
BlockRAM 

User I/Os 

 
65nm CMOS, 1.0 V 

241,152 

37,680 
37,975 Kbit 

720 

A. Core/Peripheral Cluster Implementation 

The overview of a core cluster implementation is 

depicted in Fig. 5. Each core cluster is formed from 

several processor cores (up to eight cores) and a single-

cycle router as described in Section II.B. In addition, the 

L2 cache is also located on the core cluster. The L1 

data/instruction caches, L2 cache and router buffers are 

implemented by using dedicated BlockRAMs (BRAMs) 

of FPGA. The cluster bus is 32-bit width which is the 

same as bit-width of the processor core bus. The packet 

width in the router used for communicating with its 

neighbors is 38-bit, in which 32-bit is dedicated for data 

and other 2-bit is used for the flit identification of the 

packet and the remainder is needed for managing buffer 

credits of the router. The memory access caused by L1 

cache misses is controlled by a module named MEM 

Access Controller. If the address of a memory access 

operation is of the cacheable property, the access goes to 

the L2 cache and if the L2 cache miss happens, then the 

access goes to the global main memory via the router. 

 
Figure 5.  Block diagram of a core cluster. 

The peripheral cluster is composed of several 

controllers of peripherals such as the SDRAM, UART, 

and SysACE which are combined by the Xilinx PLB 

(Processor Local Bus). We use IP cores provided by 

Xilinx for those controllers. Similar to the core cluster, a 
router is also associated with the peripheral cluster, and 

linked to the PLB. By this way, the peripherals will be 

connected to core clusters via the on-chip network. As an 

enhancement, our platform enables to set the additional 

memory access latency arbitrarily, which provides a 

contribution to the evaluations on the impact of memory 

access latency. 

B. Off-board Communications 

Since the hardware resource of the FPGA device 

(Virtex-6 XC6VLX240T) used for our evaluation 

platform is only enough for about eight processor cores, a 
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many-core processor with tens or hundreds of cores 

cannot be implemented on one ML605 board. Hence, our 

many-core platform is constructed by a combination of 

multiple ML605 boards connected in a network, in which 

each core cluster is implemented in a board and the 

communication between routers is performed by a 

communication interface between boards. Note that the 

peripheral cluster is a special case. Since the hardware 

resource usage of the peripheral cluster is quite small, it 

can be configured in the same board in accordance with 

one of the core clusters (Fig. 6). 

 

Figure 6.  Configuration of a peripheral cluster and a core cluster in 
one board. 

We use a high-speed serial communication interface 

called rocket I/O for communication between boards. The 

rocket I/O interface uses GTX transceivers for its data 

conversion and transmission. A rocket I/O 

communication module is developed as a wrapper for the 

router module. When a router transfers some packets to a 

neighboring cluster, the data is transmitted between 

boards via the rocket I/O interface. The rocket I/O 

communication module uses a high-speed serial 

communication protocol called aurora provided as an IP 

core in Xilinx ISE. The SMA (SubMiniature version A) 

standard interface is used as a physical connection for 

serial communication between boards. 

Although ML605 evaluation board has only two links 

(bi-directional) of SMA connection, it is possible to 

increase up to eight links for one board by using an add-

in board of FMC (FPGA Mezzanine Card). In case of 

two-dimensional mesh network, if one cluster is 

configured in one board (as shown in Fig. 5), a total of 

four links are sufficient for all directions (bi-directional 

communication) to connect to neighboring clusters, 

thereby a communication network can be constructed by 

using these add-in boards in addition to the main boards. 

As a result, theoretically it is possible to build the 

evaluation platform for many-core with infinite number 

of cores, by using the communication interface 

mentioned above. 

In our current platform, eight ML605 boards are 

connected to form a 4x3 two-dimensional mesh network 

where eight core clusters and one peripheral cluster are 

provided. Because the peripheral cluster is located on the 

same FPGA device implementing one of the core clusters, 

the numbers of total clusters are nine and the size of 

network is 4x3. A core cluster consists of 8 cores, 

therefore a total of 64 processor cores are available in the 

platform. Thanks to the symmetry of a mesh network, it 

is possible to extend the platform to a larger environment 

with more than 64 cores easily. 

C. Implementation Results 

The resource usage of the FPGA device for the major 

modules such as the processor core, router, and board 

communication controller are listed in Table II. The 

implementation results show that, the processor core 

consumes the largest amount of hardware resources in 

comparison with that of the other modules. It is 

approximately three times larger than the router or board 

communication controller. The area overhead of MEM 

access controller or packet controller is very small as 

compared to the area overhead of the processor core. In 

the case of configuring eight cores in a core cluster, most 

of the hardware resources are used for the processor cores, 

and area overhead of the other modules is not significant. 

This indicates that clustering by several cores contributes 

to the reduction of area overhead due to the router for 

NoC. 

TABLE II.  AREA OVERHEAD 

 
Slices 

(%) 

Flip-Flops 

(%) 

LUTs 

(%) 

Core cluster 

  Processor core 

  Router 
  MEM controller 

  Board controller 

 

3,301 (8%) 

1,170 (3%) 
201 (0.6%) 

1,257 (3%) 

 

7,089 (2%) 

6,232 (2%) 
338 (0.1%) 

3,059 (1%) 

 

10,942 (7%) 

  8,813 (6%) 
  533 (0.3%) 

  2,775 (2%) 

Peripheral cluster 

  I/O controller 

  Router 

  Packet controller 

 
1,596 (4%) 

1,170 (3%) 

147 (0.4%) 

 
6,007 (2%) 

838 (0.3%) 

168 (0.1%) 

 
  2,577 (2%) 

  3,400 (2%) 

  240 (0.2%) 

IV. BENCHMARK EVALUATION 

A. Experimental Settings 

In order to evaluate the proposed many-core 

architecture, we conducted experiments on our developed 

evaluation platform with several parallel programs. At 

this point, the L2 cache coherence mechanism is under 

development, therefore the L2 cache is disabled for 

evaluations with multiple clusters. The clock frequency 

for each functional block is set as follows: 20MHz for 

processor core, 10MHz for cluster bus, and 100MHz for 

DDR3-SDRAM. 

To verify the basic functionality and to perform 

preliminary evaluation, we use parallel applications from 

a popular parallel benchmark suite called SPLASH2 [12] 

for our initial experiment. We employ FFT and LU 

programs which are widely used in digital signal 

processing and image processing for the experiment. We 

use the pthread version of FFT and LU benchmark 

programs. For code generation, we use gcc 4.4.6 targeted 

for MIPS32 processors. 

For the FFT and LU which contain floating-point 

operations, we choose the solution of using gcc's soft-
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float option in which floating-point arithmetic operations 

are done by software emulation. 

To use pthread API for parallelizing the evaluated 

programs, we develop a simple version of pthread library 

with a minimum set of pthread functions for our many-

core evaluation environment. By using this pthread 

library, the evaluated programs are compiled and 

executed without any code modification except for option 

parsing. Currently, basic functions for creating/joining 

threads, mutex lock operations, and barrier 

synchronization are provided in our developed pthread. 

B. Evaluation Results 

The evaluation results of FFT and LU benchmark 

programs in terms of parallel processing efficiency are 

shown in Fig. 7. The results are normalized to the 

performance of one core for each program. The figure 

shows that, performance of FFT increases in accordance 

with the increase of the number of cores. However, the 

speed-up is not adequate as compared to the number of 

used cores. The main reason of this circumstance is the 

memory access bottleneck. Since the heap memory area 

is uncachable, most of the data access operations go to 

the global main memory which causes the cluster bus and 

network congestions. The situation is worse in LU. A 

slight improvement of performance or even worse 

performance degradation is observed with the increase of 

the number of cores. This is due to the memory access 

bottleneck as well as cache flushing needed when the 

synchronization and the mutex lock functions are called. 

 

Figure 7.  Evaluation results of parallel speed-up. 

In general, the parallel processing efficiency can be 

improved by the use of the L2 cache. Moreover, if a 

reasonable control mechanism for cache coherence is 

provided, data in heap memory region can be accessed 

through the cache and no cache flush is necessary. As a 

result, a significant enhancement of parallel processing 

efficiency can be achieved. 

Obviously, the solution of developing a many-core 

architecture based on low-performance but small and 

very low-power cores can help attaining very high 

performance and efficient parallel processing, without the 

complexity of implementation. 

As mentioned in Section III, the advantages of 

developing many-core evaluation platform on FPGA are 

evaluation speed and scalability. The comparison of 

evaluation time (or simulation time) between our 

platform and software simulator is presented in Fig. 8. 

We use MARSS simulator [13] as the software simulator. 

The MARSS simulator is known as one of the fastest 

cycle accurate simulator with capability of full system 

simulation. Though the model of our proposed many-core 

architecture is different from that used in MARSS, we set 

the architecture parameters such as issue width and cache 

configuration to get a suitable one, which is similar to our 

architecture as much as possible. The specifications of 

host machine for MARSS simulator are shown as follows. 

 CPU: Intel Core-i7, 3.33GHz 

 LLC (L3): 12MB 

 Main Memory: DDR3-1066, 6GB 

 

Figure 8. 
 

Evaluation time between our platform and software 

simulator.
 

In the Fig. 8, FFT_soft and
 

LU_soft indicate the 

simulation time in
 

software simulator. Because of the 

limitation of MARSS
 

simulator, we can measure the 

simulation time for maximum of
 

8 cores. The results 

marked as FFT and LU are the evaluation time in our
 

platform. As shown in the figure, the simulation time in 

the software simulator for one core
 
is slightly longer than 

our evaluation environment. When the number of used 

cores
 
increase, the evaluation time gets shorter

 
in our 

evaluation environment, while
 

the required time
 

for 

simulation in the software simulator becomes very longer. 

In the case of eight cores, the
 
evaluation time of software 

simulator is 20 times slower than that of our platform. 

This
 
indicates that the FPGA emulation has a very good 

scalability. From these observations, we
 

can conclude 

that implementing many-core platform on FPGA is an
 

appealing
 
alternative

 
for evaluating

 
many-core processors 

with several tens to hundreds of cores.
 

V.
 

CONCLUSION
 

In this paper, we introduce a many-core architecture
 

for
 
realizing

 
a high performance and low power many-

core processors for automotive embedded systems
 

by 

using many low-performance
 

but small and very low-

power cores. The solution of implementing the proposed 

architecture
 

with multiple mass-produced FPGA 

evaluation boards is presented. In addition, for the 

purpose of
 

evaluating
 

performance and parallel 

processing efficiency of the proposed many-core
 

architecture and verifying
 
its hardware system, the initial 

experiments with the use of several SPLASH2 
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benchmark programs are conducted on our developed 64-

core evaluation platform. The evaluation results are 

affirmed and the observations on them are also discussed. 

In the future, we consider implementing and 

developing the inter-cluster cache coherence mechanisms 

as well as the software development environment. 

Besides, the evaluations of various realistic applications 

for automotive embedded systems are also taken into 

account in our future work. 
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