
LIN Flash Bootloader Based on UDS

Feng Luo and Yue Yin Xie
Clean Energy Automotive Engineering Center, School of Automotive Study, Tongji University, Shanghai, China

Email: luo_feng@tongji.edu.cn, xieyy135@126.com

Abstract—Flash Bootloader is necessary for updating or

maintenance of the ECUs on the Vehicle. This paper

discusses how to develop the LIN flash bootloader based on

Unified diagnostic services. First is to discuss the software

structure of the flash bootloader, the next is to discuss the

details of hardware layer, LIN driver layer and UDS layer

of the structure, and then is to discuss the solution for

reliability. After all these works, test the software with a

standard diagnostic tool. The result proofs that the LIN

flash bootloader works properly as designation, the software

follows to the LIN protocol and Unified Diagnostic Services

protocol strictly, and the ECU can restore from the errors

during downloading period.

Index Terms—flash bootloader, LIN, unified diagnostic

services, reliability

I. INTRODUCTION

More and more electronic control units (ECUs) are

used on the vehicle. Updating the program of the ECUs

becomes an important issue for the OEM. It needs an

easy and convenient solution to updating the program of

ECUs. Flash bootloader is necessary for the ECUs.

The FBL for the vehicle ECUs shall translate data via

CAN or LIN Bus. Currently, the two most widely used

buses on the vehicle are CAN and LIN. Compared with

CAN, LIN is based on the normal UART controller,

which exists in nearly all the MCU. The data link layer of

LIN is realized by software and doesn’t need the specially

designed LIN controller. That can save a lot of money for

the OEMs. The speed of LIN Bus is up to 20kbps, which

is suitable for the controllers of window, door and

sunroof, sunshade etc. And this paper selected LIN Bus

as the communication solution.

The FBL shall also need to be executed according to a

standard protocol. Road Vehicle-Unified Diagnostic

Services according to the ISO14229 is the standard

diagnostic protocol for automotive industry, so this paper

select UDS as the diagnostic services.

The following chapters will discuss how to design the

flash bootloader. And a MCU named MC9S12XEP100

from Freescale Company is selected as the target

hardware to test the result of the FBL program.

II. SYSTEM STRUCTURE

Manuscript received December 11, 2014; revised March 11, 2015.

LIN Flash bootloader based on UDS contains 4 layers:

Hardware layer, LIN Driver layer, Unified Diagnostic

Services Layer and Application layer, as Fig. 1 shows.

MCU Hardware Layer

 Flash

Driver

UART

driver

Timer

Driver

LIN Driver

Clock

Driver

Transport

Layer

 Bootloader Application

Frame Handler

Signal

Interaction

UDS Services

Figure 1. Structure of LIN UDS flash bootloader.

Hardware layer works as the basic drivers of the

hardware. It is better for the bootloader to have smaller

code size, so hardware layer only need to realize MCU

clock driver, UART driver, timer driver and Flash driver.

LIN driver layer bases on the UART driver and timer

driver, frame handler is responsible for all the LIN data

link layer, the signal interaction module translates the

data between the real application signal and LIN data

frame. LIN driver has integrated the transfer layer

internal, which is used for translating one or more frames

of LIN Bus.

The Unified Diagnostic Services Layer according to

the ISO14229 is responsible for the diagnostic controls.

The UDS for LIN bases on the translate module and

diagnostic frames of LIN driver.

Application layer can access to the hardware layer

directory, such as initial the clock system, erase, write

and read flash. It can also interacted with LIN driver

directly, all the frames except diagnostic is interacted

between application layer and LIN driver directly. For

Flash bootloader, the application layer gets the UDS

requests from the tester, and calls the hardware driver

functions directly. After finished the work, the

application layer translate the result by UDS response

frame to the tester.

This paper mainly discuss about Hardware layer, LIN

driver layer and UDS layer.

47

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering
doi: 10.12720/joace.4.1.47-52

III. HARDWARE DRIVER LAYER

The target hardware is MC9S12XEP100. This paper

don’t discuss the basic driver of clock, UART or flash,

but focus to the locating of interrupt vector table and

protect of flash driver, which are import for flash

bootloader.

A. Locating of Interrupt Vector Table

The flow of a hardware interrupt routine is as Fig. 2.

When detect the trigger of the external interrupt, check

the interrupt vector table, get the interrupt service routine

address, jump to this address to execute this interrupt

routine, and after finishing this routine, return the main

routine.

func1: address@0xAddress1

func2: address@0xAddress2

…

funcN: address@0xAddressN

Vector Table @ AddressVec

Function X

Main routine

Check Table

External

Trigger

Return To

Jump To

Figure 2. Flow of interrupt service routine.

For the application without flash bootloader, there is

only one vector table, and the compiler will locate this

table to the default address. Take XEP100 for example,

the compiler locate this table to the default address

0xFF00 [8]. As Fig. 3 shows.

Figure 3. Default interrupt vector table.

For the application integrated with flash bootloader,

there are two interrupt tables existing. One is for Flash

bootloader and the other is for the application [6]. In this

paper, the interrupt table located at the default address is

assigned to flash bootloader and another interrupt table

located at 0xBF00 is assigned to application. As Fig. 4

shows.

Figure 4. Two interrupt vector table.

B. Security of Flash Driver

Flash driver contains the erasing, reading, writing of

Flash. This chapter doesn’t discuss the detail but the

security of flash driver.

For the ECU, it is very important to protect the

program internal from modifying or damaging

unexpectedly. So, there shall be security of flash driver to

ensure they are called intentionally. This paper uses the

solution called relocating program address to ensure the

driver are not executed unexpectedly, even if the program

counter of CPU points to the flash function entry address

saved in the ROM.

Relocating program means relocate the real run

address of the program to the address in the RAM instead

of the address which saves the codes in the ROM. When

the function is needed to be called, the ECU copies this

function from the ROM address to the relocated address

in the RAM. And then jump to the function entry address

in the RAM. After finishing the operation, clear the area

which saves this function in the RAM, and return to the

main routine. Take XEP100 for example, to relocate the

code by modifying the linker file as following:

SAMPLE_CODE_SEG = READ_ONLY 0xFD00 TO

0xFEFF RELOCATE_TO 0x3D00.

These codes notify the compiler to compile the code

saved between 0xFD00 to 0xFEFF area using the run

address between 0x3D00-0x3DFF. Fig. 5 shows how to

call the relocated functions:

Main Routine

Copy

From ROM(0xFD00-0xFEFF)

To RAM(0x3D00-0x3EFF)

Flash function

Clear
RAM(0x3D00-0x3EFF)

Jump to Function entry address

Figure 5. Flow of call flash driver.

IV. LIN DRIVER LAYER

This paper discusses the transport control layer and

diagnostic frames of LIN other than the detail of LIN bus,

which have connection with the LIN Flash Bootloader.

A. Transport Control Layer of LIN

LIN Bus usually works as the sub-bus of CAN BUS.

The tester is not connected to LIN Bus directly.

Diagnostic is executed via the CAN Bus and integrated

with LIN Bus via CAN/LIN gateway. As Fig. 6 shows.

Transport control layer of LIN of Bus is used to have the

same diagnostic capabilities as CAN Bus.

48

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering

Figure 6. Typical set up for LIN Bus diagnostic.

To translate data containing one or more frames, some

translate control information should add into the LIN data

frame. The LIN frame with transport control information

is called PDU (package data unit). Messages issued by

the client are called request and messages issued by the

server are called response. The structure of the PDU is as

Fig. 7 [2].

Figure 7. PDU structure.

The first byte contains the NAD (Node Address for

diagnostics) by which a LIN slave is addressed in the

case of a master request frame. Only a LIN slave that has

already been addressed by a master request frame is

authorized to use the diagnostic response.

The second byte contains the PCI (Protocol Control

Information), which specifies the type of diagnostic

frame: according to PCI, transported frame can be

identified as a complete message (Single Frame, SF) or a

part of the message (First Frame, FF or Consecutive

Frame, CF).

The third byte contains the SID (or RSID) that

specifies the request (or the response) shall be performed

by the slave node addressed. The interpretation of the

subsequent data bytes for these messages is provided in

this diagnostic specification and depends on the SID or

RSID (see Chapter 5 about diagnostic services).

B. Diagnostic Frames of LIN

There are two identifier specially designed for

diagnostic frames. ID 0x30 is used as master request

frame and ID 0x3D is used for slave response frame [2].

Take the bus system as Fingure6 for example. The tester

send the diagnostic request, this frame is translated to

CAN/LIN gateway. Then the gateway which works as

client translates the request frame with 0x3C identifier to

the slave node, which works as server. And the slave

node will query the diagnostic module whether it shall

response or silent. If it shall response for the request, it

will translate the diagnostic frame with 0x3D identifier.

During the response period, the master shall send the

response frame header unconditionally. The work flow as

Fig. 8:

Figure 8. Diagnostic frame flow.

The time value in Fig. 8 is specified in LIN protocol. It

is minimal value is 50ms, which defines the time between

reception of the last diagnostic request frame on the LIN

bus and the slave node being able to provide data for a

response. And the maximum value is 500ms, which

defines the time after which a slave node must receive a

slave response header before it discards its response.

V. UNIFIED DIAGNOSTIC SERVICES

A. Introduction of UDS

Unified Diagnostic Services (UDS) are established in

order to define common requirements for diagnostic

system, whatever the serial data link is [1]. It bases on the

open systems interconnection (OSI) basic reference

model in accordance with ISO7498-1 and ISO/IEC 10731,

which structures communication systems into seven

layers. When mapped on this model, the services used by

a diagnostic tester (client) and an ECU (server) are

broken into: unified diagnostic services as layer 7 and

communication services (layer1-6) [5].

For the ECU with LIN communication, the map of 7

layer module is as Table I:

TABLE I. SEVEN LAYER MODULE OF ECU WITH LIN BUS

Application Layer ISO14229(UDS)

Present Layer --

Session LIN Driver

Transport LIN Driver

Network LIN Driver

Data Link LIN Driver

Physical LIN Transceiver

B. Work Flow of the FBL Based on UDS

Only a part of services of UDS are needed for FBL.

For the ECU integrated with UDS, the reprogramming

steps are as Fig. 9. These steps can be divided into 4 parts:

preparation for reprogramming of ECU, Security access,

jump to the FBL and download program in FBL.

49

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering

Application Code
Flash Bootloader

Switch to

Adjustment session

Disable the setting

of diagnostic

trouble codes

Diable normal messge

communication

Switch to programming

session

Seek&Key

Jump to FBL

Erase Flash

Prepare for Download

Receive data and write the data

Exit from receiving data

Checksum

ECUReset

Figure 9. Reprogramming step of ECU.

C. Preparation for FBL

Before get the reprogramming request, the ECU is

running in the application mode. Some preparation is

necessary before jump to the FBL mode. It contains the

following 4 steps to disable some function module and

switch to the programming mode: use session control

service (SID = 0x10) with value 0x03 to switch the ECU

to adjustment session; using control DTC setting

service(SID = 0x85) to disable the setting of diagnostic

trouble codes, which may cause unintended detection of

fault conditions during download; using communicating

control service(SID = 0x28) to disable the translating and

receiving of normal messages, which are not needed for

flash bootloader; using session control service with value

0x02 to switch back to programming session.

Take session control as example to explain how the

ECU interacted with the diagnostic tools based on UDS.

First, Diagnostic tools send the session control request.

The data package of the request is [1]:

Request 0x10 0x02:programming session

ECU gets the request and switch to programming

session. If this operation is success, then send the positive

response, the data package is [1]:

Positive 0x50 0x02:programming session

If the operation fails, then send the positive response to

the diagnostic tool, the data package is [1]:

Negative 0x7F 0x10: session control ID EC

D. Security Access

The program and data saved in the ECU concern the

safety of the vehicle. ECU uses seed and key mechanism

to forbid the illegal access to the ECU. Fig. 10 shows the

work flow of seed&key.

Figure 10. Work flow of seed&key.

The diagnostic tool send the request (SID = 0x27) with

value 0x01 to request the seed from the ECU. Seed value

is a random number generated by ECU. ECU translate the

response (SID = 0x67) with the seed value to the

diagnostic tool. The tool calculates a key with the seed

and private key and translates the key to the ECU. ECU

checks whether the key from the tool matches to the key

calculated itself. If it matches, the diagnostic tool gets the

authority to access the ECU.

E. Jump to the FBL

After get the authority to access ECU, the diagnostic

tool send routine control of jumping to FBL request to the

ECU. Then the ECU sets a global variable equals to

macro definition as FBL_MODE, which is saved in the

RAM and will not be changed during the reset. After

startup, the first step is to check this global variable in the

RAM. If this variable equals to FBL_MODE, jump to the

Flash bootloader program. Fig. 13 shows the work flow

of jumping to the FBL program.

Get request to

Jump to FBL

Set

WorkModeLable =

FBLMODE

Reset

Check

WorkModeLable

=FBLMODE

FBL

Entry

Other

Routine

Start Up

Yes

No

Figure 11. Work flow of jumping to FBL program.

F. Download Program

Downloading program with flash bootloader mainly

contains the following steps: using routine control of

erase service to erase all the flash sectors which are used

to save the application code; using request download

service(SID = 0x34) to notify the ECU prepare to

download data; using translate data service to translate

program data to the ECU; using translate exit service to

notify the ECU exit the receiving data mode; using

routing control of checksum service to check correctness

50

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering

and completeness of the reprogrammed codes; using ECU

reset service to reset the ECU and restart to run into the

application program.

It takes a long time to execute the routine control of

erase and checksum services. The main routine of ECU

shall not wait until finished erasing flash or calculating

checksum, otherwise the ECU will miss all the LIN

communication during this period. In this paper, the

solution is to create a sub-routine control function. When

the UDS module receives the request to erase flash or

checksum, set a flag to notify the sub-routine control

function to start erasing or checksum. The sub-routing

control function is running in the main loop and process

part of the work every cycle. After finishing all the work,

the sub-routing control function will notify the UDS

module that result is ready. And then, the UDS module

translates the result to the diagnostic tool.

VI. RELIABILITY OF FBL

A. Error Handling

If there are some unexpected errors happen during

download program. The diagnostic will try to send the

request for 5 times [4]. If the ECU restores from the

errors in the 5 times and response to the diagnostic tools

successfully, FBL works continually, otherwise the ECU

will be reset to wait for another work flow of FBL.

If there are terrible errors happen during downloading

and it makes the program of the ECU blocked. The

hardware watchdog will monitor this situation and reset

the ECU.

B. Integrity of Program

LIN FBL uses checksum to ensure that it downloads

the program to the ECU without losing or changing data.

It mainly contains two parts of work: calculating and

integrating the checksum of hex file; checksum service of

ECU.

For the first part, it needs PC software that can

calculate the checksum and integrate the value to the hex

file. Fig. 12 is a sample work flow of processing the hex

file. In this paper, the flash area addressed at 0xBF00 is

used to store the checksum value. The checksum is

downloaded to the ECU as other codes in the hex file.

Figure 12. Calculate and integrate checksum of hex file.

After finishing downloading program to ECU, the

diagnostic tool will send the checksum service request to

the ECU. Then the ECU calculates the checksum with the

value read from the flash area, and compare it with the

one stored at 0xBF00. If matches, it means the hex file

has be downloaded to the flash without lost or changing.

VII. TEST OF LIN FBL

This paper uses the LIN-flashing tool software from

IHR GmbH to test the LIN FBL software. IHR GmbH is

a German vehicle electronic company and is one of the 3

testing centers of LIN BUS certified by Volkswagen.

A. Test with Correct Private Key and Hex File

The first step is to test the software with correct private

key and hex file to check whether the LIN FBL can work

properly with the standard diagnostic tools. As Fig. 13

shows, the program is downloaded to the ECU smoothly.

That means the LIN Flash Bootloader designed in this

paper follows the LIN protocol and Unified Diagnostic

Services strictly.

Figure 13. LIN Flashing Tool downloads the program to the MCU

successfully.

B. Test with Wrong Private Key

The second step is to test with wrong private key to

check whether the LIN FBL can protect the ECU from

illegal access. As Fig. 14 shows, the illegal access is

denied by the ECU. The diagnostic tool will try to send

request for 5 times if the last one fails. After that, reset

the ECU to wait for another work flow of bootloader.

Figure 14. The illegal access is denied by the ECU.

51

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering

C. Test with Corrupted Hex File

The third step is to test with corrupted hex file to check

whether the LIN FBL can detect the fault of changing or

losing data during downloading. As Fig. 15 shows, the

FBL detect the fault of checksum successfully. After 5

times retries, The ECU is reset to wait for the next work

flow.

Figure 15. Downloading fails with corrupted hex file.

VIII. CONCLUSION：

The paper supplies a solution of FBL to the vehicle

with LIN nodes. With the FBL, the tester only needs to

connect the tool to the standard interface of the vehicle

and update the program of the ECU, which takes great

convenience to the tester.

The FBL bases on Unified Diagnostic Services. The

UDS is an open protocol and all the related company can

develop its own UDS software package and diagnostic

tools according to the protocol documents. That makes

the OEM have more choices to select the best solution for

the ECU. And the UDS is designed according to the open

systems interconnection (OSI) basic reference model, it is

benefit for the vehicle to be integrated into the internet of

things in the future.

REFERENCES

[1] Road vehicle–Unified diagnostic services (UDS)–specification

and requirements.
[2] LIN Specification Package Revision 2.1. LIN-SUBBUS,

2006.12.24.

[3] Salcianu, M. Fosalau, and Cristian, “A new CAN diagnostic fault
simulator based on UDS protocol,” in Proc. International

Conference and Exposition on Electrical and Power Engineering,
Iasi (RO) 2012.

[4] T. Liu, Y. H. Zhao, W. J. Cai, W. Q. Chen, X. M. Wei, and F. Q.

Zhao, “Troubleshooting mechanism and strategies of automotive
communication based on UDS,” Vehicle Electric, no. 2, 2013.

[5] Y. Zheng, F. F. Li, and F. Luo. “Vehicle remote diagnostic system
implementation based on 3G communication and browser/server

structure,” in Proc. 2012 International Conference on Information

Engineering, Singapore, 2012.
[6] M. W. Xue, Z. M. Ri, and C. Xiaohui. “Design and realization of

bootloader in embedded system,” Computer Engineering, vol. 31,
no. 7, 2005.

[7] W. Yagang. “Analysis and transplant of embedded bootloader

mechanism,” Computer Engineering, vol. 36, ch. 6, 2010.
[8] MC9S12XEP100RMV1, Freescale Semiconductor. 2010.09

Feng Luo Feng Luo received his PhD degree in Aircraft Control

Engineering from Northwestern Polytechnical University in 2000. From
2000 to 2002, he did his postdoctoral research work in the Department

of Automotive Engineering of Tsinghua University. Feng Luo came to
Tongji University in 2002, he is now a Professor in Automotive

Engineering Study of Tongji University. His research interests include:

Automotive Networks, Automotive Electronic System Control ，

Vehicle to Vehicle Communication.

Yueyin Xie Yueyin Xie starts his Postgraduate in Tongji University
from 2010. During this time, his main research includes: Vehicle CAN

Networks, Vehicle to Vehicle Communication and Data Recorder. Now

he is doing his PhD program at Tongji University. The research for
PHD is Conformance test of AutoSAR.

52

Journal of Automation and Control Engineering Vol. 4, No. 1, February 2016

©2016 Journal of Automation and Control Engineering

