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Abstract—This paper addresses a multi-robot SLAM 

approach based on the Kalman consensus filter (KCF). 

Under the unknown initial condition, a reference robot 

designates the initial poses of other robots when the first 

rendezvous between them occurs. Accordingly, past and 

current poses and maps of these robots are estimated by an 

acausal filter and a causal filter. If initialized robots meet 

again, their current poses are updated using the KCF. 

Accordingly, their past poses and maps until the most recent 

rendezvous are also compensated through the acausal filter. 

In two simulations, the FastSLAM algorithm, which is a 

special case of Rao-Blackwellized particle filters, was 

employed for SLAM. The performance of the proposed 

approach was verified by comparing conventional 

approaches.  

 

Index Terms—Kalman consensus filter, Rao-Blackwellized 

particle filter, Multi-robot SLAM, FastSLAM 

 

I. INTRODUCTION 

Multiple robots should know their surroundings and 

their poses concurrently before performing some 

missions such as mineral resources exploration and 

rescuing people. For this, the cooperation of them can be 

considered for time efficiency and map accuracy, which 

is called multi-robot SLAM or Cooperative SLAM [1].  

Teresa A et al. in [2], [3] concentrated the cooperation 

between aerial and ground robots. They consider some 

events between robots such as rendezvous, feature 

correspondences and absolute localization measurements 

for loop-closing. But they have an assumption that the 

robots know their pose relative to one another. 

Rao-Blackwellized particle filters for a single robot are 

extended for multiple robots in [4], [5]. A. Howard 

designs a multi-robot SLAM framework under the 

unknown initial condition. A reference robot 

incrementally builds a map and localizes its poses. Other 

robots just accumulate their control input and observation 

obtained from equipped sensors. If they meet with the 

reference robot, they are initialized at that time, and their 

past and current poses and surrounding maps are 

estimated in the unified coordinate.  

Chen et al. in [6] presented a multi-robot FastSLAM 

algorithm by combining Kalman-Consensus Filter (KCF) 

to improve the accuracy of localization and mapping. In 

the feature update part, the KCF is performed. However, 
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they basically assumed known data association for 

features and the known initial condition. 

To perform Multi-robot SLAM, the information filter 

and the information consensus filter are used together in 

[7]. They compare the results from the information 

consensus filter and covariance intersection (CI). But the 

known conditions are still assumed in the simulation. 

In our previous work [8], [9], we proposed a multi-

robot SLAM framework. Under the unknown initial 

condition, robots initialize their poses when the first 

rendezvous with the reference robot occurs. Subsequently, 

the poses and maps between the N-1th and the Nth 

rendezvous are compensated whenever the Nth 

rendezvous occurs again. For the compensation, current 

poses for two robots are fused by Covariance Intersection 

(CI).  

Therefore, this paper presents a Rao-Blackwellized 

particle filter based multi-robot SLAM using the KCF in 

the event of rendezvous. Unlike the conventional 

approach, we consider several rendezvous between robots. 

The robots are initialized at the first meeting with a 

reference robot. In the case of the second rendezvous or 

more rendezvous, the current pose and covariance of two 

robots are fused via the procedure of the KCF. Based on 

these poses, their past poses and maps are compensated 

through backtracking until the most recent rendezvous 

point. In two simulations, we show the performance of 

the proposed approach in terms of the accuracy of the 

robot pose and map. First the conventional approach for 

the multi-robot SLAM framework and its problems are 

described in Chapter 2. In Chapter 3, the proposed 

approach is explained in detail. Chapter 4 shows the 

accuracy of the robot pose and map through the 

simulations. This paper is summarized in Chapter 5. 

II. PROBLEM DESCRIPTION 

Under the unknown initial condition, the coordination 

of multiple robots should be unified in one frame. To 

tackle this problem simply, we put a reference robot Rf as 

described in [4]. Rf incrementally estimates its pose f

tx  

and map mt. Other robots just accumulate their control 

input ut and sensor measurement zt over time. In this 

paper, a Rao-Blackwellized particle filter are used for 

single robot SLAM. Although the state of the ith particle 

should be written by ( )i

tx , i is omitted to simplify 
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following expressions. Suppose that Rf meets an arbitrary 

robot Rn in time t = a. Rf measures the relative 

transformation vector n

a
 between Rf and Rn. In addition, 

the pose of Rn is initialized on the frame of Rf as follows: 

  n n f

a a ax x                              (1) 

where the operator  indicates an appropriate 2D 

coordinate transform, and n

ax  is the initialized pose of Rn 

at t=a. We assume that the uncertainty of n

a
 is 

negligible. 

After the initialization, the past poses 
1: 1

n

ax and maps 

1: 1

n

am of Rn are estimated using the accumulated control 

input u1:a and sensor measurement z1:a. The current pose 
n

tx and map n

tm  of Rn are also estimated using the current 

control input ut and sensor measurement zt, 

simultaneously. In those estimations, two estimators are 

exploited, which are an acausal filter and a causal filter. 

The posterior for Rf and Rn is now represented as follows: 

1: 1: 1: 0: 1 0 1: 0: 1

1: 1: 1: 1 1: 1 1: 1: 1: 1: 0: 1, 0

1: 1 1: 1 0: 1 1: 1: : 1

( , , | , , , , , )

( | , , , , , ) ( | , )

( | , , , ) ( | , , , )

 

    

     

 

 

  

n f f f f n n n

t t t t t t a

f f n f n f f f f f

t t a a a t a t t t t

n n n f n n n n f n

a a a a a a t a t a t a a

p x x m z u x z u

p m x z x z x z p x z u x

p x z u x p x z u x

(2) 

where 
1:

f

tz , 
0: 1

f

tu , 
1:

n

tz  and 
0: 1

n

tu  are the measurements and 

the control inputs of Rf, and the measurements and the 

control inputs of Rn until t, respectively. 

If Rn met another robot Rm at t=b, Rm is also initialized 

using the estimated state of Rn at t=a+(a-b) as computed 

in (1).  

In this framework, the second or third rendezvous is 

not considered because the unknown initial condition 

problem is already solved at the first meeting. However, 

at each rendezvous point, the uncertainties of two robots 

can be dramatically reduced. To do this, in our previous 

work, we adopted Covariance Intersection (CI) for the 

reduction of the uncertainties at the Nth rendezvous. In 

case of Rf, CI is applied as follows: 

      
1 1 1

' ' '1
  

  newf f n

a a aP w P w P            (3) 

         1 1 1

' ' ' ' ' '1
  

  newf newf f f n n

a a a a a ax P w P x w P x  (4) 

where 
'

f

aP  and 
'

n

aP  denote the covariance matrices of Rf 

and Rn at 't a , respectively. 
'

newf

aP  and 
'

newf

ax  are the 

updated covariance and state of Rf. The estimated 

covariance and state of Rn are also updated by following 

the same procedure. 

But CI does not always guarantee the convergence of 

the filter. In addition, it has worse performance than the 

Kalman consensus filter (KCF), which is empirically 

verified in [6]. 

III. PROPOSED APPROACH 

As we mentioned, the errors of the robot poses and 

maps are consistently accumulated over time. If 

rendezvous between robots occurs more than two times, 

the errors can be dramatically reduced. For the error 

reduction, we adopt the KCF to overcome the problem of 

CI. In this section, the proposed approach is described by 

focusing on the error reduction. 

t = a t = a'+(a'-a)

Rn

t

t = a+(a-b) t = a+(a-b)+bt = b t = a'

First 

Rendezvous (f-n)

Second

Rendezvous (f-n)
First 

Rendezvous (n-m)

Rf

Rm

R'n

R'm

R''n

Path using causal filter

Compensated path

Path using acausal filter

 

Figure 1. An example for the proposed multi-robot SLAM framework. 

If a reference robot Rf meets an arbitrary robot Rn for 

the first time, the initialization of Rn is conducted using 

(1). As shown in Fig. 1, if the second rendezvous occurs 

between them at 't a , two robots exchange their 

information vector 
'

i

av , information matrix 
'

i

aV and 

prior/predicted state estimate | 1
ˆ



i

a ax . In case of Rf, the 

information vectors and matrices are updated, 

respectively, as follows: 

' ' ' f f n

a a ab v v ,   
' ' ' f f n

a a aB V V                 (5) 

Like (5), the fused information vector and matrix for 

Rn are calculated via the same procedure. Based on the 

fused data, the state  of  Rf
 can be computed as follows:  

 1

'| ' '| ' 1 ' ' ' '| ' 1 ' '| ' 1 '| ' 1
ˆ ( ) ( ) 

       f f f f f f f n f

a a a a a a a a a a a a a ax x M b B x J x x
 
(6)

 

where Kalman gain
'

f

aM is determined by
 

1

' '( )f f

a aJ B , 

consensus gain is
 

represented by 1

'( ) f

aJ , and
 


 
is 

defined
 
by

  1

'1 || ( ) ||  f

aJ . In the consensus term, '| ' 1

n

a ax
 

indicates
 

the average state of particles to estimate the 

pose of Rn. 
Likewise, Rn 

is also updated as follows:
 

 1

'| ' '| ' 1 ' ' ' '| ' 1 ' '| ' 1 '| ' 1
ˆ ( ) ( ) 

       n n n n n n n f n

a a a a a a a a a a a a a ax x M b B x J x x  
(7)

 

where Kalman gain '

n

aM is determined by
 

1

' '( )n n

a aJ B
 
and 

consensus gain is represented by 1

'( ) n

aJ . In the 
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consensus term, 
'| ' 1

f

a ax  denotes the average state of 

particles to estimate the pose of Rf. In addition, their 

covariance matrices 
'

f

aP  and 
'

n

aP  are also updated by 
'

f

aM  

and 
'

n

aM . Based on 
'| '

ˆn

a ax  and 
'| '

ˆ f

a ax , two acausal filters are 

generated, which are carried out from the second 

rendezvous point to the first rendezvous point. It also has 

map 
1: 1:( , )  

f f

b bM z x  and 
1: 1:( , )  

n n

b bM z x , which implies 

that the quality of the map around the first rendezvous 

point is relatively reliable. A reliability parameter   is 

defined to set a reliable range. 

Fig. 2 shows the proposed multi-robot SLAM 

framework. Each robot basically estimates its pose and 

map using a Rao-Blackwellized particle filter. This filter 

has better performance than the extended Kalman filter 

due to multi-hypothesis data association and time 

complexity. In the first rendezvous with the reference 

robot, the initializations of robots are conducted in the 

frame of the reference robot. A causal filter and an 

acausal filter are generated to estimate its past poses and 

maps as well as its current pose and map. If the second or 

more rendezvous occurs, the current poses of two robots 

are promptly updated via the process of the KCF. 

Subsequently, two acausal filters with early maps around 

the first rendezvous point are generated for the pose 

compensation. Finally, these acausal filters are terminated 

when the pose at the previous rendezvous point is 

updated. In addition, the acausal filter, which is generated 

at the first rendezvous, is terminated when the pose and 

the map estimations at the start point of the robot are 

finished. 

Acausal update

Acausal 

compensation

Initialization

Current pose 

compensation

(Kalman Consensus)

Acausal 

update

Rao-Blackwellized Particle Filter based SLAM

Causal 

update

1
st
 rendezvous N

st
 rendezvous

Acausal 

compensation

(use early maps) 

Termination check

 

Figure 2. The proposed multi-robot SLAM framework 

IV. SIMULATIONS 

To evaluate the performance of the proposed approach, 

we extend and refine the simulator made by Time Bailey 

[10]. In two different simulations, robots localize their 

poses and build maps by assuming the unknown initial 

condition. These robots move at a maximum speed of 

3m/s. The period of the update for the control input is 

0.5s. The period of the update for observation is 1.6s. In 

addition, they have non-holonomic constraints (e.g. 

maximum steering angle: 30 degree and maximum rate of 

change in steer angle: 20 degree). Their control noise Q 

and observation noise R are defined as follows: 

0 0
,

0 0

 

 

   
    

  

V R

G B

Q     R                  (8) 

where V
, G

,  R
 and  B

 are 0.33, 3rad, 0.1, 1rad, 

respectively. 

For single robot SLAM, the FastSLAM algorithm is 

used, which is a special case of Rao-Blackwellized 

particle filters [11]. Ten particles are used to operate the 

FastSLAM algorithm. 

A. Simulation I 

Rendezvous II

Rendezvous I

Path of Rf

(Reference robot)

Features

Waypoints

Path of Rn

 

Figure 3. The environment of the simulation I. The path of Rn is 
represented as the blue line. The path of Rf is represented as the red line. 

They move in opposition directions. There are 16 way points and 35 
features. 

In this simulation, there are 16 way points and 35 

features as shown in Fig. 3. A reference robot Rf and an 

arbitrary robot Rn move in opposition directions. During 

their journey, they meet two times. Until the first 

rendezvous point, the poses and maps of Rf are only 

estimated. The control input and the observations of Rn 

are just accumulated. After the first rendezvous, the past 

poses and maps of Rn are estimated through an acausal 

filter and its current pose and map is updated by a causal 

filter. The acausal filter is operated from the first 

rendezvous point to the start point of Rn. In this 

simulation, the time step t at the first rendezvous is about 

200. A boundary constant of reliability   is defined as 50, 

which implies that the map updated from 200t  to 

250t  is used for the compensation after the second 

rendezvous.  

TABLE I.  COMPARISON OF POSE ERRORS AT RENDEZVOUS 

 No fusion KCF fusion 

For Rn 1.7634 0.7936 

For Rf 0.4461 0.3871 

 

When the second rendezvous occurs, the current poses 

of two robots are updated using the KCF. The accuracy 

for the poses is described in Table I. The errors of both 

poses are reduced using the KCF. In addition, the 

covariance of both robots is decreased, which implies that 

the robot poses can be more correctly estimated. 

Subsequently, the poses and the map of each robot are 

also updated based on the compensated current pose. It is 

conducted between the first rendezvous point and the 

second rendezvous point.  
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Compensated 

path

Estimated 

path for Rn

(Acausal)

Estimated 

path for Rf

Estimated 

path for Rn

(Causal)

 

Figure 4. The result of the simulation I. The estimated acausal and 
causal paths for Rn are represented as red and blue. The estimated path 
for Rf is represented as black. The compensated paths of Rn and Rf are 

represented as the green lines. 

Fig. 4 shows the final result of the simulation. The 

estimated path for Rf is represented as black. The 

estimated path for Rn is divided by a path obtained from 

the causal filter and a path obtained from the acausal 

filter. The compensated paths are described as green lines. 

As shown in the figure, the path of each robot estimated 

between the first rendezvous and the second rendezvous 

is sophisticatedly compensated. Total errors for the robot 

poses and features are computed by 

,[ ] ,[ ]( ) ( )

 


      
       

      


  
T

t i t i

true true

t i i

Pose

x N x t x N x t

total runtime
  (9) 

   [ ] [ ]

, , , ,( ) ( )

 


 
   

 


 

 
fN

T
i i

j t j true j t j true

t i j

Features

f

m m t m m t

N N total runtime
  (10) 

where N is the number of particles, ,[ ]t ix  is the ith particle 

at t, ( )truex t is the true vehicle pose at t, The jth feature of 

the ith particle is defined as 
[ ]

,

i

j tm , and fN  is the number 

of features in the map. 

TABLE II.  COMPARISON OF TOTAL ERRORS 

 
Conventional Proposed 

Pose Feature Pose Feature 

For Rn 3.8912 2.5185 1.9126 1.8414 

For Rf 2.8543 2.7269 1.7323 2.5085 

 
The robot pose and feature errors of the conventional 

approach and the proposed approach are described in 

Table II, respectively. The errors are more compensated 

in the proposed approach. If the constant parameter of the 

consensus gain   is defined more properly, the errors can 

be more reduced. 

B. Simulation II 

As shown in Fig. 5, two robots have different 

trajectories along their waypoints shaped like ‘M’. They 

meet two times that are described as Rendezvous I and 

Rendezvous II in the figure. In addition, they only 

communicate at two rendezvous points. Likewise with 

the previous simulation, the initialization of Rn is 

conducted at the first rendezvous with Rf. It occurs when 

the time is about 150. A boundary constant of reliability 

  is defined as 20, which implies that the map updated 

from 150t  to 170t  is used during the compensation 

after the second rendezvous. The compensation and the 

fusion of information occur at the second rendezvous. 

The errors of the fused pose for both Rf and Rn are 

described in Table III. In the case of the proposed 

approach, the errors are remarkably reduced due to the 

KCF, which affects subsequent compensation.  

Rendezvous I

Rendezvous II

Rf

Rn

Waypoints

Features

 

Figure 5. The environment of the simulation II. The path of Rn is 
represented as the blue line. The path of Rf is represented as the red line. 

There are 7 way points for each robot. 

TABLE III.  POSE ERRORS AT THE SECOND RENDEZVOUS 

 No filter KCF fusion 

For Rn 5.6575 1.7399 

For Rf 2.1133 1.7678 

 

The robot pose and feature errors of the conventional 

approach and the proposed approach are described in 

Table IV. Based on the compensation of the current pose 

for both Rn and Rf, the errors for the robot poses and 

features are more correctly compensated in the proposed 

approach. 

TABLE IV. 
 
COMPARISON OF TOTAL ERRORS 

 

 

Conventional
 

Proposed
 

Pose
 

Feature
 

Pose
 

Feature
 

For Rn 
1.4752

 
1.1585

 
1.1926

 
1.0441

 

For Rf 
1.3544

 
1.2296

 
1.3233

 
1.0885
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The result of the simulation II is represented in Fig. 6. 

The path of Rf (black) is incrementally estimated since it 

starts. When the first rendezvous between Rf and Rn 

occurs, the paths of Rn are estimated by the causal filter 

(blue) and the acausal filter (red). In addition, its path and 

map are represented in the frame of Rf. After the second 

rendezvous, the paths and maps of Rf and Rn are 

compensated by the KCF and backtracking. As shown in 

the figure, their paths and maps are compensated more 

accurately. 

Compensated 

path

Estimated 

path for Rn

(Acausal)

Estimated 

path for Rf

Estimated 

path for Rn

(Causal)

 

Figure 6. The result of the simulation II. The estimated acausal and 
causal paths for Rn are represented as red and blue. The estimated path 

for Rf is represented as black. The compensated paths of Rn and Rf are 

represented as the green line. The compensation is operated between the 

first rendezvous and the second rendezvous. 

V. CONCLUSION 

This paper addresses a multi-robot SLAM approach 

using the Kalman Consensus Filter (KCF) in the 

rendezvous situation. Under the unknown initial 

condition, a reference robot estimates its own pose and 

map using a Rao-Blackwellized particle filter before 

rendezvous with other robots. The reference robot 

designates the initial poses of other robots when the first 

rendezvous between them occurs. Accordingly, past and 

current poses and maps of these robots are estimated by a 

causal filter and an acausal filter. When initialized robots 

meet again, their current poses are promptly updated by 

the Kalman consensus filter. Their past poses and maps 

between the current rendezvous point and the most recent 

rendezvous point are also compensated through 

backtracking. In two simulations, the FastSLAM 

algorithm, which is a special case of Rao-Blackwellized 

particle filter, was employed for single robot SLAM. The 

performance of the proposed approach is verified in terms 

of pose accuracy and map accuracy.  
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