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Abstract—An active flexible needle is a self-actuating needle 

that can bend in the tissue and reach the clinical targets 

while avoiding anatomic obstacles. In robot-assisted needle-

based medical procedures, motion planning is a vital aspect 

of operations. It is challenging due to the nonholonomic 

motion of the needle and the presence of anatomic obstacles 

and sensitive organs that must be avoided. We propose a 

novel and fast motion planning algorithm for the robot-

assisted active flexible needle. The algorithm is based on 

Rapidly-Exploring Random Trees combined with greedy-

heuristic strategy and reachability-guided strategy. Linear 

segment and relaxation of insertion orientation are taken 

into consideration to the paths. Results show that the 

proposed algorithm yields superior results as compared to 

the commonly used algorithm in terms of computational 

speed, form of path and robustness of searching ability, 

which potentially make it suitable for the real-time 

intraoperative planning in clinical operations.  

 

Index Terms—active flexible needle, motion planning, 

rapidly-exploring random tree, nonholonomic system, 

minimally invasive surgery, robot assisted surgery  

 

I. INTRODUCTION 

Needle insertion is probably one of the most pervasive 
procedures in minimally invasive surgeries, such as tissue 
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biopsies and radioactive seed implantations for cancers. 
However, the target may be located in a region 
surrounded by anatomic obstacles or sensitive organs that 
must be avoided. Traditional rigid needles can hardly 
meet these needs. As an alternative to the traditional rigid 
needles, we have been developing a flexible needle which 
is an active or self-actuating (symmetric-tip) flexible 
needle other than passive (bevel-tip) flexible needles, see 
Fig. 1 [1]. Utilizing the characteristic of shape memory 
alloys (SMA), the needle can generate a variety of 
curvatures of paths by supplying different electric 
currents to the SMA actuators [2]-[5]. 

 

Figure 1.  Schematic of an active flexible surgical needle 

In robot-assisted needle insertion procedures, motion 

planning is a critical aspect for navigating a robot and a 

needle to gain an accurate and safe operation. However, 

steering a flexible needle in the soft tissue is challenging 

due to the nonholonomic motion of the needle and the 

presence of anatomic obstacles and sensitive organs. In 

recent years, motion planning for flexible needles has 
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been extensively studied in different approaches in 2D 

and 3D environments with obstacles [6]-[18]. 

One popular approach is mathematical computation 

method, which formulates the problem as an optimization 

problem with an objective function and computes the 

optimal solution. Duindam et al. presented a screw-based 

motion planning algorithm using an optimizing function 

[6], and he also proposed an inverse kinematics motion 

planning algorithm based on mathematical calculation [7]. 

Park et al. proposed a path-of-probability algorithm to 

optimize the paths by computing the probability density 

function [8]. Alterovitz et al. formulated the path 

planning problem of bevel tip flexible needles as a 

Markov Decision Process to maximize the probability of 

successfully reaching the target in a 2D environment [9]. 

The mathematical computation method usually has a 

computational expense and may suffer from 

stability/convergence. Therefore, they are often used for 

preoperative planning, but not appropriate for 

intraoperative planning. 

Another important approach is sampling-based method, 

such as the Probabilistic Roadmaps (PRM) or the 

Rapidly-Exploring Random Tree (RRT). Alterovitz et al. 

proposed a path planner for Markov uncertain motion 

base on PRM [10]. Lobaton et al. presented a PRM-based 

method for planning paths that visit multiple goals [11]. 

Since Xu et al. firstly applied RRT-based method to 

search a valid needle path in a 3D environment with 

obstacles [12], the RRT algorithm is commonly used in 

flexible needle path planning. Patil et al. greatly sped up 

the calculation utilizing a modified version of RRT 

method that combines the reachability guided and goal 

bias strategies (RGGB-RRTs) [13], which was then 

extended into a dynamic environment replanning [14]. 

The RGGB-RRTs is the most commonly used algorithm 

nowadays. Caborni et al. proposed a risk-based path 

planning for a steerable flexible probe based on the 

RGGB-RRTs [15]. Recently, Vrooijink et al. proposed a 

rapid replanning algorithm based on the RGGB-RRTs, 

and embedded it into a control system [16]. Bernardes et 

al. presented a fast intraoperative replanning algorithm 

based on the RGGB-RRTs in 2D and 3D environments 

[17]-[18]. 

In summary, firstly, all the algorithms are only aiming 

at utilizing the curvilinear paths, but not considering the 

linear segments, which may both shorten the length of 

path and save the cost of control and energy for the active 

needle (because you do not have to make the needle bent 

by actuators). Although Patil et al. relaxed the curvatures 

of the curvilinear paths which allowed the linear 

segments in the paths theoretically, because of the 

probabilistic nature of the RRT algorithm, the possibility 

for the appearance of the linear segment is nearly non-

existent [13]. Secondly, most of the algorithms, if not all, 

are with the routine method that the insertion orientation 

is fixed or specified, e.g. to be orthogonal to the skin 

surface, therefore the planning or optimizing results are 

constrained originally. Although Xu et al. relaxed the 

insertion orientation by a back-chaining method, the 

orientation of approaching to the goal is fixed originally 

[12].  

In this paper, a novel and fast motion planning 

algorithm based on RRT is proposed for the active 

flexible needle. We propose a greedy heuristic strategy 

using the Depth First Search (DFS) method, and combine 

it with the reachablility-guided strategy to improve the 

conventional RRT [19]. It is named as Greedy Heuristic 

and Reachability-Guided Rapidly-Exploring Random 

Trees (GHRG-RRTs). We adopt variable but bounded 

curvatures of the needle paths, and we also take account 

of linear segments and relaxation of insertion orientations 

to the trajectories.  

II. KINEMATIC MODEL OF ACTIVE FLEXIBLE NEEDLE 

Different with the bevel tip needles (with two DOFs: 
insertion and rotation) [20], the active flexible needle has 
three DOFs: insertion, rotation and tip bending (relative 
to u1, u2 and electrical current I, respectively. See Fig. 2). 
There is a connection joint between the needle body and 
needle tip. The different radii of paths are attained by 
means of the different bending of the tip. And the 
kinematic model of the active flexible needle is 
formulated as follows (see Fig. 2). The position and 
orientation of the connection joint relative to frame Ψw 
can be described compactly by a 4×4 homogeneous 
transformation matrix 

(3)
0 1

wn wn

wn

 
  
 

R p
g SE                   (1) 

where Rwn∈SO(3) and pwn∈R
3
 are the rotation matrix 

and the position of frame Ψn relative to frame Ψw, 

respectively. 
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Figure 2.  Kinematic model of the active flexible needle 

If we use the connection joint part as the end-effector 

of the needle, while the needle tip working as a navigator, 

we can disregard the position of the needle tip by 

expanding the obstacles with a safty belt d. 

Then, the homogeneous transformation matrix can be 

formulated in the exponential form 

1

ˆ( ) (0) exp( )
N

wn wn i i

i

T t


 g g                    (2) 

where gwn(0) is the initial configuration of the needle 

(frame Ψn) in frame Ψw before insertion; ti is the 

performance time of the i
th

 segment; T is the total time of 
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the performance of the whole path, 
1

n

i

i

T t


 . Details 

could be attained in [20]. 

We coincide frame Ψn and frame Ψw initially, and 

consider the insertion pose (rotating β0 around axis Yw 

and then rotating α0 around axis Zw), hence, the 

configurations of the insertion pose can be obtained by 

0 0(0) ( , ) ( , )wn w wRot Z Rot Y g             (3) 

Since the inputs drive the needle to perform a 
geometric trajectory, we can encode the trajectory with 
geometric parameters instead of the actual control inputs 
U: (u1, u2, I), in order to avoid the inefficient performance 
that randomly samples control inputs to compute the best 
combination [12]. The path is composed of a series of 
segments {C1, C2, . . . , CN} [13], each of which Ci can be 
parameterized as Ui: (αi, ri, li), where αi is the rotation 
angle of the needle shaft (corresponding to u2), ri is the 
radius of the i

th
 arc (which is infinite if a linear segment, 

corresponding to I), and li is the length of the i
th

 segment 
(corresponding to u1). The transformation matrix for each 
segment gi can be formulated by Ui (details are available 
in Sec. III D). 

III. MOTION PLANNING ALGORITHM 

The needle motion planning problem is to determine 
an optimal geometric trajectory using an efficient planner, 
from which the control plans will be generated so that the 
needle tip reaches the specified target while avoiding 
anatomic obstacles. The algorithm can be divided into 
two parts: one is to generate candidate solutions of paths 
using a sample-based method, and the other is to find the 
optimal path based on an objective function. The paths 
must be complied with the kinematic constraints of the 
needle. They are smooth and with relaxed but bounded 
curvatures, including linear segments. 

A. Outline of GHRG-RRTs Algorithm 

The program is as shown in Algorithm 1. Unlike other 
RRT algorithms, once initialized with qinit, this algorithm 
does not immediately generate a random node, instead, it 
verifies whether a path can be generated directly from qinit 
to qgoal including linear or curvilinear collision-free path 
(lines 2-10). If a linear path is achieved, the searching 
finishes because obviously, it is the best path. If not, it 
verifies a curvilinear path. And then the algorithm goes 
into the loop programs. The algorithm begins to generate 
a random node qrand by the routine RandomNode(). And 
then it searches for trees and paths in a greedy heuristic 
way and iterates until the terminate condition is reached. 
 
Algorithm 1: GHRG-RRTs (qinit, qgoal, Q) 

1:   T ← InitTree(qinit); P ← InitPath(qinit);  
2:   if  LinearCheck(qinit, qgoal, Q) 

3:     U ← SolveLine(qinit, qgoal) 
4:     P ← AchivePath(T, U, qgoal) 

5:     return P 

6:   end if 

7:   U ← SolveSeg(T.ginit, qgoal) 

8:   if  U.r ≥ rmin & CollisionFree(U, Q) 
9:     P ← AchivePath(T, U, qgoal) 

10:  end if 

11:  while (n < max_path) & (i < max_iteration) 

12:    qrand ← RandomNode(); flag ← false 

13:    if  LinearCheck(qinit, qrand) 
14:      U ← SolveLine(qinit, qrand) 

15:      T ← ExtendTree (T, U, qrand) 
16:      U← SolveSeg(T.grand, qgoal) 

17:      if  U.r ≥ rmin & CollisionFree(U, Q) 

18:        P ← AchievePath (T, U, qgoal); flag ← true 
19:      end if 

20:    end if 

21:    U← SolveSeg(qinit, qrand) 

22:    if  U.r ≥ rmin & CollisionFree(U, Q) 

23:      T ← ExtendTree (T, U, qrand) 
24:    end if 

25:    U←SolveSeg(T.grand, qgoal) 
26:    if  U.r ≥ rmin & CollisionFree(U, Q) 

27:      P ← AchievePath (T, U, qgoal); flag ← true 

28:    end if 

29:    if  flag==false 

30:    qproper ← FindProperNode (T, qrand, ρ) 
31:    U ←SolveSeg(T.gproper, qrand) 

32:    if  U.r ≥ rmin & CollisionFree(U, Q) 

33:      T ← ExtendTree (T, U, qrand) 
34:      U ← SolveSeg(T.grand, qgoal) 

35:      if  U.r ≥ rmin & CollisionFree(U, Q) 
36:        P ← AchievePath (T, U, qgoal) 

37:      end if 

38:    end if 

39:  end while 

40:  popt ← Optimization(P) 
41:  return popt 

AchievePath (T, U, qgoal) 

1:  T ←ExtendTree (T, U, qgoal) 
2:  p ← ExtractPath(T) 

3:  P.add_path(p) 
4:  return P 

ExtendTree (T, U, q) 

1:  g ← GetConfig(U, q) 
2:  T. add_vertex(q) 

3:  T. add_edge(q, g) 
4:  return T 

B. Greedy-Heuristic Strategy 

In contrast to all the previous RRT algorithms, we 

propose a greedy heuristic strategy to generate more trees 

and complete more paths: on the one hand, it is greedy 

for initial node to generate a new tree; on the other hand, 

it is greedy for the goal node to achieve a path. After a 

valid random node is obtained, the algorithm will verify 

whether a linear segment could be generated connecting 

the initial node qinit to the random node qrand, if yes, a new 

tree starting with a linear segment will be generated (lines 

13-15). By doing so, it successfully relaxes the insertion 

orientations, which can be in various angles rather than 

just orthogonal to the skin surface. If the tree is generated, 

it goes on to verify whether qrand can connect qgoal (lines 

16-19), if yes, a new path will be gained. Here we are 

greedy for searching the goal, because we believe that the 

direct connection from qrand to qgoal is probabilistically 

superior to those which travel round and then connect to 

the goal. This strategy is also with an idea of DFS to 

effectively achieve goals. Then it will search for a 

curvilinear path with the similar process (lines 21-28). If 

no path is gained after above searching, it will try to 

extend the other trees that have not been achieved a path 

(line 29-33). In contrast to searching for a nearest node in 

the previous algorithms, it searches for a proper node 

qproper (by routine 30). The proper node should be amid all 

the nodes but for the initial node qinit and the goal node 

qgoal in all trees that have not been achieved a path. The 

Get a linear path 

Get a curve path 

Get a linear tree 

Get a path 

Get a curve tree 

Get a path 

Extend a tree 

Get a path 
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idea of the proper node means the node should not be too 

near to an existing node, the distance should be larger 

than a specific metric ρ in order to prevent the 

insufficient growth. It is the nearest node in those whose 

distances to qrand are larger than ρ. After qproper is acquired, 

from which the algorithm will extend the tree to qrand, 

then try to achieve a path by similar means (lines 21-28). 

C. Reachability-Guided Strategy 
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(a) Reachable region in 3D 
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(b) Reachable region in 2D 

Figure 3.  Reachable Region of the Needle 

The path is composed of a series of segments, each of 

which the final extremity corresponds to the next 

segment’s initial extremity, not only in position but also 

in orientation, because of the presence of the 

nonholonomic constraints. Hence, it is possible that a 

node is not reachable for a specific extremity (with a 

specific configuration). The reachable region of the 

needle is a mushroom-like area as shown in Fig. 3(a). In 

order to elaborate the problem, we project it into 2D 

(XOZ plane), which is a leaf-like area as shown in Fig. 

3(b). From qi-1 in a local frame Ψn, the reachable region 

will extend with the depth of insertion, but no matter how 

deeply it is inserted, there always are two regions of A 

and B that cannot be reached. There is a minimum 

bending radius rmin for the needle path corresponding to 

the mechanical properties of the needle. In order to speed 

up the search and make the following calculation 

effective, the reachability of the next node qi (may be qgoal 

or qrand) should be checked. According to the Fig. 3, the 

next node is reachable as long as 

i minr r                                    (4) 

where ri is the radius of the i
th

 segment (from qi-1 to qi), 

one of the input parameters, and can be obtained in the 

next section; rmin is the minimum radius constraint of the 

needle path. 

Different from the reachability-guided strategy 

proposed in [13], we directly use one of the input 

parameters as a judgment, instead of bringing in extra 

calculations, which is beneficial for speeding up the 

search [18].  

D. Input Parameter U and Configurationg 

Because we have considered the insertion pose, there 

are two additional parameters before insertion: α0 and β0 

as mentioned in Sec. 2. For a path starting with a 

curvilinear segment, they are generated randomly by the 

planner; for a linear path or a path starting with a linear 

segment, they are obtained by (5-6). And then the 

insertion pose gwn(0) is calculated by (4). 

0

arctan( / ), 0

arctan( / ), 0

n n

n n

y x x

y x x





 

 

      

   
           (5) 

0 arctan( / )nk z                               (6) 

where xn, yn, zn are the coordinates of the next node qi in 

frame Ψn, which is initially coincided with frame Ψw; 

2 2

n nk x y  . 
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Figure 4.  Input of the ith segment 

Assume that the extremity qi of the i
th

 segment is with 

an input Ui operating from qi-1, and is with a subsequent 

transformation matrix gi in the form as (1). A local frame 

Ψn is attached to qi-1 as is shown in Fig. 4. The 

coordinates of qi: (xi; yi; zi) in frame Ψw are converted into 

frame Ψn as qi: (xn; yn; zn), ϕi is the angle embraced by the 

circular arc. So the input Ui: (αi, ri, li) can be formulated 

as follows: 

2/ 2 / 2i nr k z k                         (7) 

2arctan( / )i nz k                    (8) 

i i il r                              (9) 

The input αi can be calculated by (5), and the 

transformation matrix gi obtained by 
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The configuration of the end-effector gwn can be 

obtained by (2). 

E. Optimization Function 

Among the candidate solutions, all of which have 

already met the required constraints, the optimal path can 

be chosen based on a cost function. The objectives of the 

optimization will take consideration of minimizing the 

tissue trauma, enhancing the accuracy, and minimizing 

the force-torque on the needle as well as the temperature 

rise. 

1 2 3 4min ( , ) min{ }F T L D S N      u   (11) 

where L is the length of the path; D is the degree of 

danger in the path, relative to the distance between the 

path and the obstacles; S is the curve valuation of the path, 

evaluated by curvatures, which is relative to the force-

torque on the needle as well as the temperature rise; N is 

the degree of control, i.e. the number of segments of the 

whole path, which is relative to the control cost and 

accuracy [21]; α1~α4 are the weighted coefficients. The 

result of the function is the comprehensive evaluation of 

the optimal path. 

IV. SIMULATION RESULTS AND DISCUSSION 

We simulated the motion planner in MATLAB® (ver. 

7.8.0, R2009a; MathWorks, Natick, MA) on a 2.5 GHz 4-

core Intel® i5™ PC. We firslty set the minmum radius 

rmin=50mm [13], [22], the specific metric ρ=10mm. The 

maximum number of the candidate paths is set to 100, 

and the maximum number of iterations to 10000. 

Assuming that the obstacle is containing a relative belt of 

safe margin around it, in order to speed up the 

computation, we can disregard the second term in (11) by 

setting α2=0. The weighted coefficients α1=α3=α4=1. In 

order to compare the performances of the GHRG-RRTs 

algorithm and the RGGB-RRTs algorithm, we set the 

goal bias factor to 0.2 as in [15].  

A. Test Case 1 
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(a) GHRG-RRTs algorithm 
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(b) RGGB-RRTs algorithm 

Figure 5.  Results of one simulation for the two approaches 

We define the envorinment similar to [12], [13], 

modeling as a cubical region with 200mm along each axis. 

Six spherical obstacles, each of radii 20mm, representing 

the pubic arch, the urethra, and the penile bulb around the 

prostate. 

Fig. 5 shows the results of one simulation for the two 

approaches, respectively. We have also performed 50 

trials and achieved all the optimal results of the two 

approaches as dipicted in Fig. 6 as well as in Table I. In 

the figures, the spheres are the obstacles, the small blue 

circles are the conjunction points of the two segments in 

the paths, the green lines are the feasible paths, and the 

red lines are the optimal ones. In the tables, the results are 

with the formation of “mean ± standard deviation” of the 

50 trials. 
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(a) GHRG-RRTs algorithm 
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(b) RGGB-RRTs algorithm 

Figure 6.  Optimal results of the 50 trials 
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TABLE I.  COMPARISON BETWEEN THE TWO APPROACHES 

Approach 

CPU time 

for one tree 

(ms) 

Value of 

function 

Length of 

path 

No. of 

iterations 

GHRG-
RRTs 

1.3±0.0001 218.10±6.21 215.54±6.14 285±22 

RGGB-

RRTs 
122.7±166.9 223.40±7.30 220.26±7.18 2476±335 

From the results of the above both cases, we can 

conclude that: (1) the GHRG-RRTs algorithm can 

effeciently achieve variety of the paths with linear 

segments as well as curved segments, and the optimal 

path is likely to be the one with linear segments; (2) the 

GHRG-RRTs algorithm is superior to the RGGB-RRTs 

algorithm thoroughly: the speed is nearly 100 times faster, 

the optimial path is always better, and the number of 

iterations is much smaller.  

B. Test Case 2 

In order to test and compare the two algorithms further, 

we have created a more complex environment by 

compressing the environments and adding extra obstacles. 

We have shrunk the environments into half and then 

added an additional obstacle to the envrionment (see Fig. 

7). We added an obstacle lacated at (0; 0; 25), with radius 

10mm. The maxmum iteration number is set to 50000, 

other settings are the same as the former.  

While the RGGB-RRTs algorithm failes to obtain any 

solution, the RGHG-RRTs algorithm successfully and 

rapidly achieves 100 trajectories and the optimal one is 

calculated. We have also performed 50 trials of the 

opimizations, results are as shown in Fig. 7 and Table II. 

It is of great significance to poit it out that the reason 

for the RGGB-RRTs planner can not find any solution is 

not because of the maximum iteration number is not large 

enough, but it is because there is no solution indeed, with 

the specific configuration (orthogonal to the surface) in 

the environment, which can be proved in a geometric 

calculation. In the contrast, GHRG-RRTs algorithm 

relaxes the insertion orientations and gains a solution in a 

fast speed. 
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(a) result of one simulation 
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(b) results of 50 trials 

Figure 7.  Results of RGHG-RRTs 

TABLE II.  PERFORMANCES OF GHRG-RRTS 

Approach 
CPU time for 

one tree (ms)  

Value of 

function 

Length 

of path 

No. of 

iterations 

GHRG-RRTs 53.1±4.4 103.38±0.54 
100.76±0

.51 
18730±1521 

Results show that the GHRG-RRTs algorithm has a 

robust searching ability. It enhances the possibility for an 

optimal solution by relaxing the insertion orientation. 

Although the searching efficiency has suffered from the 

complexity of environment compared to the former cases, 

it is still very fast. 

V. CONCLUSION 

We proposed a novel and fast path planning algorithm 

named GHRG-RRTs algorithm which is developed based 

on RRT for a robot-assisted active flexible needle 

steering. We formulated a greedy-heuristic strategy and 

combined it with the reachability-guided strategy to speed 

up the search and to improve the convergence. We 

adopted the linear segments to the paths, and the insertion 

directions are relaxed by the introduction of the linear 

segments. We also formulated an optimizing function, by 

which the optimal path can be achieved from the sub-

optimal candidate paths. Simulation tests were done in 

3D environments with obstacles. In comparison with the 

RGGB-RRTs algorithm, the performance of the proposed 

GHRG-RRTs algorithm was superior in terms of 

computational speed, form of path and robustness of 

searching ability. This high efficiency and robustness 

make it a possibility for intraoperative motion planning in 

clinical procedures. 

In the future work, we will extend this algorithm into a 

3D dynamic environment to achieve the real-time 

intraoperative planning for clinical operations, 

considering the uncertainties or errors due to tissue 

heterogeneity, tissue deformation, needle modeling as 

well as tip tracking. And then we will integrate our 

planner with a real-time feedback controller and carry out 

experiments on tissue phantoms and animal ex vivo 

tissues. 
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