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I. INTRODUCTION 

This paper addresses the local navigation of a mobile 

robot in dynamic environments, which is one of the most 

fundamental problems in robotics. The robot with range 

sensors scans the vicinity and detects nearby obstacles to 

decide its movement in performing given tasks while 

avoiding obstacles. Because the sensor inputs are updated 

periodically, the robot is controlled in discrete time. The 

representative studies on the local navigation are the 

potential field approach [1], vector field histogram [2], 

and velocity obstacle approach [3]. 

Additionally, we deal with a differential drive robot 

with non-holonomic kinematic constraints. Heretofore 

efforts to solve the non-holonomic robot navigation 

problem have generally followed these two steps: first, 

the robot’s trajectory is generated based on the 

supposition that the robot is holonomic; second, the robot 

tracks the trajectory closely by using the controller with 

non-holonomic constraints. However, the supposition in 

the first step makes a tracking error between the ideal 

holonomic trajectory and the real trajectory inevitable, as 

mentioned in [4] and shown in Fig. 1. This difference 

causes the robot’s collision with obstacles no matter how 

well the robot’s trajectory is planned. 

To remedy this problem, some studies considered non-

holonomic constraints directly. The dynamic window 

approach in [5] reflected not only the constraints but also 

the robot dynamics. A dipolar potential function was 

suggested by [6] to make two non-holonomic mobile 
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robots handling a deformable object avoid collisions in an 

environment. These two methods was limited in that they 

could be applied to only static environments. 
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Figure 1. Tracking error T
 between the ideal holonomic trajectory 

and the real trajectory. The robot moves in the   direction. 

On the contrary, [7] and [8] took dynamic obstacles 

into consideration. They defined Dynamic Velocity Space 

(DVS) that contained the potential collision information, 

which is the robot’s velocity and the corresponding 

collision time, and utilized the space to find the optimal 

command. In addition, [9] generalized the velocity 

obstacle [3] to deal with the constraints of a car-like robot 

by calculating the minimum distance between the robot 

and obstacle for randomly sampled controls. Reference 

[10] applied the concept of the velocity obstacle to the 

DVS for reducing computational complexity. However, 

[10] suffered in finding the relevant velocity for the next 

sampling period due to a disagreement in the linear and 

angular velocity units. 

This paper extends the results of [10] to solve the 

aforementioned problem. The wheel velocity obstacle 

(WVO) is defined as a set of wheel velocity pairs that 

induce collisions within the predefined time horizon and 

utilized for the robot’s local navigation. Since the wheel 

velocity units are identical, the problem in [10] can be 

solved. 

The rest of this paper is organized as follows: We 

define the local navigation problem of a differential drive 

robot and provide some preliminary information in 

Section II. In Section III, we formalize the concept of the 

WVO and mathematically derive it before using it to 

navigate the robot among multiple obstacles in Section 

IV. In Section V, we present the simulation results and 

compare them with prior studies. Finally, a conclusion is 

provided in Section VI. 
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Abstract—In this paper, we deal with the real-time 

navigation problem of a differential drive robot in dynamic 

environments. As a rule, the robot is controlled by wheel 

velocity commands at sampling intervals and moves along a 

straight line or a circular arc in accordance with those

commands. Thus, we define the wheel velocity obstacle, 

which is a set of all the left and right wheel velocity pairs 

that induce collisions with obstacles within a given time

horizon. Also, a navigation strategy is suggested that will 

allow the robot to reach its destination without colliding 

with obstacles. Our algorithm was found to outperform 

previously released collision avoidance algorithms in terms 

of safety through Monte Carlo simulations.

Index Terms—collision avoidance, motion planning, velocity 

obstacles, differential drive robot



II. PRELIMINARIES 

A. Problem Definition 

A differential drive robot, , navigates to a 

destination in a two-dimensional plane while avoiding 

collisions with obstacles. The world inertial frame and the 

frame attached to  are denoted by { , , } O X Y  

and { , , } O X Y  respectively, as shown in Fig. 2. 
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Figure 2. The world inertial frame  and the frame  attached to 

the robot . 

The robot is circular with radius r . It is currently 

located at p  and facing   direction with respect to 

. The robot has two drive wheels mounted on a 

common axis, each of which is operated independently. 

The distance between the wheels is l , and the left and 

right wheel velocities along the ground are 
,Lv  and 

,Rv . 

Furthermore, they are limited by the maximum wheel 

velocity, maxv , and the maximum wheel acceleration, 
maxa . In addition to , there are n  obstacles in the 

workspace. A set of obstacles is referred to as , and 

each obstacle i
 is circular with radius 

i
r . It is 

currently located at p
i
 and moves with velocity v

i
. 

The robot employs a discrete-time control strategy 

with constant sampling time t  and is moved by the 

wheel velocity commands. At each time instant 
kt , it 

observes the position and velocity of the obstacles that 

falls in the detection region expressed as 

     2

2
   x x pk k dD t t  (1) 

where d
 is the radius of the region. The set of obstacles 

in region D  is , which helps  compute its new 

wheel velocities, 
new

,Lv  and 
new

,Rv , in the next sampling 

interval so that the robot reach the destination, goal
p , 

while avoiding the obstacles. The new velocities have to 

satisfy the velocity and acceleration constraints and be as 

close to the preferred wheel velocities, 
pref

,Lv  and 
pref

,Rv , as 

possible. 

B. Differential Drive Robot Kinematics 

A differential drive robot is operated by the rotary 

motion of its two wheels. As a result, the robot cannot 

move in the lateral direction: 

       (2) 

where ( ) SO(2) R  is the planar rotation matrix 

corresponding to angle   and ( ) [cos sin ]  u
T  is 

the unit vector with direction  . Therefore, the motion of 

the robot is characterized by its linear and angular 

velocities v  and w , where 

 
, ,

2




L Rv v
v , 

, ,


R Lv v
w

l
 (3) 

Suppose the robot maintains its velocities for a 

sampling time, t . Then it moves along the circular arc 

with signed radius and center of 
cr  and pc

, 

respectively. 

 
, ,

, ,2






L R

c

R L

v vl
r

v v
 (4) 

    90   p p R uc cr  (5) 

At the next time instant 
1kt , the robot’s position and 

heading direction are 

       1    p p R p pk c k ct w t t  (6) 

    1    k kt t w t  (7) 

The radius in (4), however, diverges to infinity when 

the left and right wheel velocities are equivalent. In other 

words, the robot moves along a straight line. Therefore, 

the robot’s position at the next time instant is changed to 

but the heading direction is invariant. 

          p p uk kt t t v t  (8) 

C. Mapping Obstacles to the Configuration Space 

When planning the differential drive robot’s motion, it 

is more intuitive to consider obstacles in the 

configuration space. In the process of mapping them from 

the workspace to the configuration space, the radius of 

obstacle 
i
 increases from 

i
r  to 

i
r r . The position 

and velocity of the obstacle 
i
 are 

     p R p p
i i

 (9) 

   v R v
i i

 (10) 

viewed with respect to . The obstacle mapped from 

i
 is denoted by 

i
 such that 

  2

2i ii r r    x x p  (11) 

For the sake of simplicity, the pre-superscripts of p
i
 

and v
i
 are discarded to be p

i
 and v

i
 hereafter. 

III. WHEEL VELOCITY OBSTACLES 

In this section, we describe the WVO so that a 

differential drive robot navigates to the destination 

without collisions. We first introduce the concept of the 

WVO and then elucidate how to construct them.  

The wheel velocity obstacle |



i
WVO  is defined as the 

set of all the left-right wheel velocity pairs that would 

induce a collision with obstacle i  within time  . The 

robot avoids colliding with i  before time kt  if the 
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T
d

dt
         



new wheel velocity pair new new

, ,( , )L Rv v  does not belong to 

|



i
WVO  at time 

kt . 

In contrast with the original velocity obstacle 

suggested in [3], the overall shape of the WVO is 

somewhat complicated due to the nonlinearity of the 

robot’s motion. To derive it, we will divide it into two 

sets according to the geometry of the robot’s path: 

|



i
SWVO  and |



i
CWVO such that 

| | |

  
i i i

WVO SWVO CWVO . 
|



i
SWVO  is the 

WVO when the robot moves along a straight line, and 

|



i
CWVO  is the WVO when it moves along a circular 

curve. For the latter set, there must be a difference 

between the static and dynamic obstacle. The following 

three cases are analyzed accordingly.  

A. Straight Line Path 

First, we consider the case where the robot’s wheel 

velocities are equivalent. To find the WVO region, we 

review the concept of original velocity obstacles [3] since 

the robot and obstacle move along a straight line path. 

This region is represented as 

     2

| ,   
i iSWVO v v v  (12) 

where ( )   is the line such that 

      0 0    v
i

T
v t v t  (13) 

here, velocity v  is the x-coordinate of a point in the 

intersection between the original velocity obstacle, 

|



i
VO  in [3], and the x -axis if and only if 

  |, 
i

v v SWVO , as shown in Fig. 3. 
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Figure 3. The original velocity obstacle of [3] and the red line on the 

x-axis. The red line is the range of v that satis-

fies   iv . Hence, 

2

| 1 2{(v, v) | v v }    
i

SWVO v . 

B. Circular Curve Path / Static Obstacle 

Suppose the robot makes the circular path with radius 

cr  and avoids a static obstacle, 
s

. In the robot’s 

configuration space, the center of the path is at 

(0, )pc cr . Fig. 4 shows the range of the path’s radius 

that induces a collision between the robot and the 

obstacle, as well as the angular position at which the 

collision occurs. 

Incidentally, the angular position,  , is defined 

according to the robot’s wheel velocities. The angular 

position is measured counterclockwise if 0w  and 

clockwise for all other cases. The zero angular position is 

defined as the direction from pc  to the origin. 

X

Y

O

b1

cr

b2

cr

cr

s
 s

s


Collision
Spot

 

Figure 4. The range of the radius making the robot collide with obsta-

cle 
s
 , and the collision spot where the collision occurs. 

The boundaries of the forbidden radii, b

cr , satisfy the 

following equation: 

    
s s s

2 2
2 b b

, ,    x y c cp p r r r r  (14) 

From (14), we get 

  

  
s s s

s s

2
2 2

, ,b

,2

  


 

x y

c

y

p p r r
r

p r r

 (15) 

Let b1

cr  and b2

cr  denote the values of (15) such that 
b1 b2c cr r . If the robot moves along a circular arc with 

radius 
cr  where 

   b1 b2 b1 b2 0  c c c c c cr r r r r r  (16) 

It will meet 
s
 at some time in the future. 

We are interested in whether the collision is generated 

within time   when the radius satisfy (16). The collision 

time must be calculated in accordance with the robot’s 

velocities. We first compute the angular position of the 

collision spot. When the robot’s wheel velocity pair 

, ,( , )L Rv v  is given, 
s

  denotes the angular position of 

the center of 
s
 such that 

      
s s

sgn sgn ,
2


     p pcw v  (17) 

where ( ) v  represents the angle of vector v  to 

coordinate axes, and v  and w  are calculated from (3). 

s
  is given by the angular difference between the 

center of 
s

 and the collision spot with respect to pc
. 

Using the second law of cosines,  

   

 

s s s

s

s s

2 2
2 2

, ,

2
2

, ,

arccos

2


    

 

 

x y c c

c x y c

p p r r r r

r p p r

   (18) 

where cr  is from (4), and the angular displacement of the 

collision spot is calculated by 
s s

   from (17) and 

349

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing



(18). Hence, the wheel velocity obstacle 
s|

CWVO  is 

now defined as 

 

  
s

s s

2

| , , , ,

, ,

, , .


  

  

  

L R R L

R L

CWVO v v v v

l v v

  

  
s

s s

2

| , , , ,

, ,

, ,

.



  

  

  

L R R L

R L

CWVO v v v v

l v v
                

(19) 

C. Circular Curve Path / Dynamic Obstacle 

In this subsection, we extend the results of [7] and [10]. 

In [7], the Collision Band is defined as the zone swept by 

the object moving along a straight line. Let 
d

a  denote a 

vector that is perpendicular to the heading direction of 

d
 and is directed against the origin such that 

     
d d d d d 2

sgn 90 90  a p R v R v v
T  (20) 

where sgn( )  is the modified sign function such that 

sgn(0) 1 . Also, 
d ,b i , 1,2i  refer to the contact points 

between 
d

 and the boundaries of the Collision Band 

such that 
d ,1b  is on the boundary closer to the origin and 

d ,2b  is on the other line. Thus, the two points are 

expressed as 

  
d d d d,1   b p ar r  (21) 

  
d d d d,2   b p ar r  (22) 

Fig. 5 presents two red arcs, 
1A  and 

2A , that shows the 

intersection of the robot’s path and the Collision Band. 

Let  be a set of these arcs. The robot and the obstacle 

do not meet each other in 
iA , 1i   or 2  if the robot 

enters 
iA  when the obstacle has just excited it or if the 

robot escapes from 
iA  when the obstacle is entering it, as 

mentioned in [7]. For this reason, we need to know when 

the obstacle overlaps with 
iA  and where the robot enters 

or exits from 
iA . We will derive the wheel velocity 

obstacle based on whether the robot is located in the 

Collision Band or not 

d
v

d
p

x

y

1p

2p

3p

4p

1

o

2

2A

1Acr

 d 1t

 d 2t

Collision
Band

 d 0

d ,1b

d ,2b

d
a

 

Figure 5.
 

The robot’s path and the collision band of the obstacle. The 
red arcs are the intersection

 
between them. No collision occurs if 

the robot arrives at 
1p
 
after time 

1t
 
or leaves from 

2p before 

time 
2t .

 

If the Collision Band does not include the origin, the 

number of the intersection arcs, ( ) , varies depending 

on the radius of the path. 

  
d d d

d d d d d

,1

,1 ,2

0, ,

1, ,

2, otherwise.

  


   



p a b a

b a p a b a

T T

c c

T T T

c c

r

r   (23) 

We divide 
d|

CWVO  into 
d| ,



iCWVO , 1,2i  on the 

basis of the number of the arcs where index i  represents 

( ) . We define the set 2i
 such that 

, ,( , )L R iv v  if and only if ( )  i  when the robot 

moves with that velocity. 

If ( ) 1 , the obstacle meets  from 
1t  to 

2t . The 

times 
1t  and 

2t  are calculated by 
1 center ffset1  ot t t  and 

2 center ffset1  ot t t  where  

  
d d d

2

center
2

 p p v v
T

ct  (24) 

 
    d d d

d

2
2

ffset1

2

   



p p a

v

T

c c

o

r r r

t  (25) 

In order to find the angular positions 
1  and 

2  where 

the robot enters or exits from the intersection, 
offset1  must 

be defined. 

  d doffset1 ,1arccos  b p a
T

c cr       (26) 

Then 
d1 offset1      and 

d2 offset1      where 

d
  is from (18). Thus, the wheel velocity obstacle is 

expressed as 

 
 

 

 

 

d| ,1 , , 1 1 2 0

1 2

, ,

2 1

, , 0, ,

2 2
.

min , max , 0

 

   



    

  
   



L R

R L

CWVO v v t t k

l k l k
v v

t t

  (27) 

Here, the constraints that contain 0  and   such as 

1 t  are inserted for the collision generated within time 

 . Since the motion of the robot along the circular path is 

periodic, the terms of 2k  are added. 

If ( ) 2 , put 1 center ffset1  ot t t , 

2 center ffset2  ot t t , 3 center ffset2  ot t t , and 

4 center ffset1  ot t t   

where 

      d d d

d

22

ffset2

2

   



p p a

v

T

c c

o

r r r

t
    (28) 

The obstacle overlaps with the intersection arcs after 

1 2( , )t t t  or 3 4( , )t t t . 

Likewise, put 
d1 offset1     , 

d2 offset2     , 

d3 offset2     , and 
d4 offset1      where 

  d doffset2 ,2arccos  b p a
T

c cr      (29) 

The robot is in the Collision band when its angular 

position along the path is in the intersection 
1 2( , )   or 

3 4( , )  . 

To derive the wheel velocity obstacle, each of the 

angular position segments must be associated with the 

relevant time segment. If 
d d

sgn( ) (90 ) 0  a R v
Tw , the 
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obstacle moves counterclockwise with respect to the 

origin in the robot’s configuration space. We define the 

function :   where {1, 2, 3, 4}  such that 

( ) x x . If it does not, then the function   is defined as 

( ) mod( 1,4) 1   x x . Thus, the wheel velocity 

obstacle is expressed as 

 

  
 

  
 

 

  
 

  
 

d| ,2 , , 2 1 2 0

1 2

, ,

2 1

, , 2 3 4 0

3 4

, ,

4 3

, , 0, ,

2 2

min , max , 0

, , 0, ,

2 2
.

min , max , 0



 

 



   





   



    

  
   



    

  
   



L R

R L

L L

R L

CWVO v v t t k

l k l k
v v

t t

v v t t k

l k l k
v v

t t

  (30) 

In the case when the collision band includes the origin, 

  





 

 

d d d

d d d

d d d

d d d

,1

,2

,1

,2

0, min ,

1,

0,

2, otherwise.

  

  



   

    



p a b a

p a b a

p a b a

p a b a

T T

c c

T T

c

T T

c c

T T

c c

r

r

r

  (31) 

When ( ) 0 , the circle, not an arc, intersects with 

the Collision Band. Therefore, the robot cannot escape 

from the band. As a result, the wheel velocity obstacle is 

   
d| ,0 , , 0 1 2, , 0    L RCWVO v v t t   (32) 

Suppose that ( ) 1 . We calculate offset1  by 

substituting 
d

a  of (26) with 
d

a  if 

d d d,1| | p a b a
T T

c cr  or by substituting 
d ,1b  with 

d ,2b  otherwise. Then put 
d1 offset1      and 

d2 offset1     . Afterward, 
1  and 

2  are adjusted 

to be 
1 [ 2 , 0)    and 

2 [0, 2 )  , respectively. 

Finally, the wheel velocity obstacle 
d| ,1

CWVO  is given 

by (27). 

If ( ) 2 , the condition that the function   is the 

identity function is changed to , 0 
dc yr v . 

d
a  of (26) 

is substituted with 
d

a . Then we calculate i
, 

1, , 4i and adjust them to be [0, 2 ) i . The 

subscript of i
 is rearranged so that 

2 3 4 1      , 

and 
1  is in the range of [ 2 , 0) . Finally, the wheel 

velocity obstacle 
d| ,2

CWVO  is obtained by (30). 

  

In this section, we explain how the robot navigates 

among the multiple obstacles to arrive at the destination 

without collision. 

We first define the observable wheel velocity obstacle 

such that
| | ii

WVO WVO 




.  

The set of the wheel velocity pairs that the robot can 

reach in time t  is denoted by 
RRV . From the velocity 

and acceleration constraints of the robot, RRV  is 

represented by 

  
    

new new 2 max new new max

, , , ,

new new 2 new max

, , , ,

, ,

, , , .

    

    

R L R L R

L R j j

RV v v v v v v

v v v v a t j L R

 

  

 (33) 

In addition, the reachable avoidance velocities is 

denoted by 
RRAV  such that |\R RRAV RV WVO . If 

the robot selects its new velocities in 
RRAV , there are no 

collision until time   has passed. 

The robot’s preferred wheel velocities are determined 

after its preferred linear and angular velocities are 

calculated. The preferred angular velocity is  

   pref goal goal2   p pw t  (34) 

where ( )   is a non-decreasing function whose minimum 

value is 1. In particular, when the destination is close 

enough for the robot to arrive at the next time,   gets the 

minimum value. The preferred linear velocity is 

   pref goal lim prefmin , v d t v w  (35) 

where lim max pref( ) 2 | |  v w v l w , and 
goald  is the 

distance between the robot and the destination such that 

 
 

goal goal

, ,ygoal

goal goal goal

2

, if 0,

sin , otherwise.

 
 

 
p p p

xp p
d  (36) 

The preferred wheel velocities, pref

,Lv  and pref

,Rv are 

computed by using (3). 

If 
pref pref

, ,( , )L R Rv v RAV , the robot selects
pref pref

, ,( , )L Rv v  as 

the new wheel velocity pair new new

, ,( , )L Rv v . If not, the robot 

should find the pair closest to pref pref

, ,( , )L Rv v  in 
RRAV . 

Since the geometry of 
RRAV  is complicated, we adopt a 

sampling method. First, we randomly sample candidates, 

( , )i i

L R Rv v RV , 
sample1, ,i N . Next, the candidates in 

|WVO
 are eliminated. Finally, the pair closest to 

pref pref

, ,( , )L Rv v  among remaining samples is chosen as 
new new

, ,( , )L Rv v , as described in Fig. 6. 
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Figure 6. The observable wheel velocity obstacle and the process of 
selecting a new velocity. The blue square is the velocity con-

straint, and the green square is the acceleration constraint. The 
robot’s current velocity is indicated by the black mark and its pre-

ferred velocity is shown as the yellow star. Because the yellow 

star is in the wheel velocity obstacle, we choose the red mark as 
the new velocity, 
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If RRAV , we remove the farthest obstacle from 

 and redefine the 
|WVO  one by one until 

RRAV . At worst, the closest obstacle makes 

|WVO
  be empty. In this case, we set the time horizon 

  as t . 

V. SIMULATION 

The implementation details are described in the 

following. The simulation is performed in the Matlab 

software on a PC equipped with Intel Core i7-3770 

3.40GHz CPU and 8GB memory. 
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Figure 7. Screenshot of the robot’s navigation among 4 obstacles using 
the wheel velocity obstacles. The number above the image shows 

the number of trials. 

As shown in Fig. 7, the simulation environment is a 

two-dimensional indoor space of 7m by 7m, where a 

Pioneer 3DX robot [11] moves toward the destination 

while avoiding collisions. On the basis of the robot’s 

datasheet, its parameters are assigned. The robot’s radius 

r  is considered as its swing radius 0.267m, and the 

distance between the two wheels is 0.381m. In addition, 

the maximum velocity of the robot is 1.2m/s, and the 

maximum acceleration is 1.5m/s
2
. The maximum 

detection distance d
 is 5m, the sampling period t  for 

robot control is 0.3s, and the predefined time horizon   

is 1.5s. 

In the simulation space, obstacles move with given 

random velocities. At each time instant, obstacles change 

their velocity with probability
iOp . When the robot 

escapes from the simulation space, its heading direction is 

switched inwards to the space. 

The Monte Carlo simulations are used to demonstrate 

the performance of the wheel velocity obstacle approach. 

We simulate the scenario consecutively for easier sample 

generation. For example, when the robot reaches its 

destination, the location of the destination is just 

resampled. When the robot collides with some obstacles 

in the simulation, the robot is placed in a newly sampled 

location. 

The performance of our algorithm is compared with 

that of the algorithm [3], which controls a differential 

robot as if it has no non-holonomic constraint. The total 

number of scenario samples is 1000. The simulation 

results are summarized in Table I. Although the average 

computation time of our algorithm for each sample period 

is somewhat longer than that in [3], it is not important 

because the computation time is far shorter than the 

sampling time. The success rate of the algorithm is much 

higher than that in [3]. Therefore, it is confirmed that our 

algorithm outperforms other algorithms in terms of safety. 

TABLE I.  SIMULATION RESULTS 

Algorithm 
Computation time 

 per time step (ms) 
Success rate (%) 

Proposed 2.2 92.6 

[3] 1.9 75.9 

 

VI. CONCLUSION 

In this paper, we derived the wheel velocity obstacle. 

Since a differential drive robot has nonlinear motion, the 

derivation process was divided into three cases according 

to the robot’s trajectory and the mobility of obstacles. We 

suggested a sampling scheme for the robot’s local 

navigation utilizing the wheel velocity obstacle. The 

proposed algorithm was shown to be superior in avoiding 

the collisions according to the Monte Carlo simulations. 

In future research, we will consider abrupt motion 

changes of the obstacle since failures in the simulation 

were induced by the abrupt changes of obstacle’s velocity. 

We will also attempt to avoid collisions between robots. 
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