
Wheel Velocity Obstacles for Differential Drive

Robot Navigation

Jae D. Jeon and Beom H. Lee
Department of Electrical and Computer Engineering, Seoul National University, Seoul, the Republic of Korea

Email: {innocent88, bhlee}@snu.ac.kr

I. INTRODUCTION

This paper addresses the local navigation of a mobile

robot in dynamic environments, which is one of the most

fundamental problems in robotics. The robot with range

sensors scans the vicinity and detects nearby obstacles to

decide its movement in performing given tasks while

avoiding obstacles. Because the sensor inputs are updated

periodically, the robot is controlled in discrete time. The

representative studies on the local navigation are the

potential field approach [1], vector field histogram [2],

and velocity obstacle approach [3].

Additionally, we deal with a differential drive robot

with non-holonomic kinematic constraints. Heretofore

efforts to solve the non-holonomic robot navigation

problem have generally followed these two steps: first,

the robot’s trajectory is generated based on the

supposition that the robot is holonomic; second, the robot

tracks the trajectory closely by using the controller with

non-holonomic constraints. However, the supposition in

the first step makes a tracking error between the ideal

holonomic trajectory and the real trajectory inevitable, as

mentioned in [4] and shown in Fig. 1. This difference

causes the robot’s collision with obstacles no matter how

well the robot’s trajectory is planned.

To remedy this problem, some studies considered non-

holonomic constraints directly. The dynamic window

approach in [5] reflected not only the constraints but also

the robot dynamics. A dipolar potential function was

suggested by [6] to make two non-holonomic mobile

Manuscript received July 10, 2014; revised october 11, 2014.

robots handling a deformable object avoid collisions in an

environment. These two methods was limited in that they

could be applied to only static environments.

T



Ideal Holonomic

Trajectory

Real Trajectory

v
w

Figure 1. Tracking error T
 between the ideal holonomic trajectory

and the real trajectory. The robot moves in the  direction.

On the contrary, [7] and [8] took dynamic obstacles

into consideration. They defined Dynamic Velocity Space

(DVS) that contained the potential collision information,

which is the robot’s velocity and the corresponding

collision time, and utilized the space to find the optimal

command. In addition, [9] generalized the velocity

obstacle [3] to deal with the constraints of a car-like robot

by calculating the minimum distance between the robot

and obstacle for randomly sampled controls. Reference

[10] applied the concept of the velocity obstacle to the

DVS for reducing computational complexity. However,

[10] suffered in finding the relevant velocity for the next

sampling period due to a disagreement in the linear and

angular velocity units.

This paper extends the results of [10] to solve the

aforementioned problem. The wheel velocity obstacle

(WVO) is defined as a set of wheel velocity pairs that

induce collisions within the predefined time horizon and

utilized for the robot’s local navigation. Since the wheel

velocity units are identical, the problem in [10] can be

solved.

The rest of this paper is organized as follows: We

define the local navigation problem of a differential drive

robot and provide some preliminary information in

Section II. In Section III, we formalize the concept of the

WVO and mathematically derive it before using it to

navigate the robot among multiple obstacles in Section

IV. In Section V, we present the simulation results and

compare them with prior studies. Finally, a conclusion is

provided in Section VI.

347

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing
doi: 10.12720/joace.3.5.347-353

Abstract—In this paper, we deal with the real-time

navigation problem of a differential drive robot in dynamic

environments. As a rule, the robot is controlled by wheel

velocity commands at sampling intervals and moves along a

straight line or a circular arc in accordance with those

commands. Thus, we define the wheel velocity obstacle,

which is a set of all the left and right wheel velocity pairs

that induce collisions with obstacles within a given time

horizon. Also, a navigation strategy is suggested that will

allow the robot to reach its destination without colliding

with obstacles. Our algorithm was found to outperform

previously released collision avoidance algorithms in terms

of safety through Monte Carlo simulations.

Index Terms—collision avoidance, motion planning, velocity

obstacles, differential drive robot

II. PRELIMINARIES

A. Problem Definition

A differential drive robot, , navigates to a

destination in a two-dimensional plane while avoiding

collisions with obstacles. The world inertial frame and the

frame attached to are denoted by { , , } O X Y

and { , , } O X Y respectively, as shown in Fig. 2.

O
X

Y

X
Y

p



i

p
i

v
i

p
i

Figure 2. The world inertial frame and the frame attached to

the robot .

The robot is circular with radius r . It is currently

located at p and facing  direction with respect to

. The robot has two drive wheels mounted on a

common axis, each of which is operated independently.

The distance between the wheels is l , and the left and

right wheel velocities along the ground are
,Lv and

,Rv .

Furthermore, they are limited by the maximum wheel

velocity, maxv , and the maximum wheel acceleration,
maxa . In addition to , there are n obstacles in the

workspace. A set of obstacles is referred to as , and

each obstacle i
 is circular with radius

i
r . It is

currently located at p
i
 and moves with velocity v

i
.

The robot employs a discrete-time control strategy

with constant sampling time t and is moved by the

wheel velocity commands. At each time instant
kt , it

observes the position and velocity of the obstacles that

falls in the detection region expressed as

     2

2
   x x pk k dD t t (1)

where d
 is the radius of the region. The set of obstacles

in region D is , which helps compute its new

wheel velocities,
new

,Lv and
new

,Rv , in the next sampling

interval so that the robot reach the destination, goal
p ,

while avoiding the obstacles. The new velocities have to

satisfy the velocity and acceleration constraints and be as

close to the preferred wheel velocities,
pref

,Lv and
pref

,Rv , as

possible.

B. Differential Drive Robot Kinematics

A differential drive robot is operated by the rotary

motion of its two wheels. As a result, the robot cannot

move in the lateral direction:

 (2)

where () SO(2) R is the planar rotation matrix

corresponding to angle  and () [cos sin]  u
T is

the unit vector with direction  . Therefore, the motion of

the robot is characterized by its linear and angular

velocities v and w , where

, ,

2




L Rv v
v ,

, ,


R Lv v
w

l
 (3)

Suppose the robot maintains its velocities for a

sampling time, t . Then it moves along the circular arc

with signed radius and center of
cr and pc

,

respectively.

, ,

, ,2






L R

c

R L

v vl
r

v v
 (4)

    90   p p R uc cr (5)

At the next time instant
1kt , the robot’s position and

heading direction are

       1    p p R p pk c k ct w t t (6)

    1    k kt t w t (7)

The radius in (4), however, diverges to infinity when

the left and right wheel velocities are equivalent. In other

words, the robot moves along a straight line. Therefore,

the robot’s position at the next time instant is changed to

but the heading direction is invariant.

          p p uk kt t t v t (8)

C. Mapping Obstacles to the Configuration Space

When planning the differential drive robot’s motion, it

is more intuitive to consider obstacles in the

configuration space. In the process of mapping them from

the workspace to the configuration space, the radius of

obstacle
i
 increases from

i
r to 

i
r r . The position

and velocity of the obstacle
i
 are

     p R p p
i i

 (9)

   v R v
i i

 (10)

viewed with respect to . The obstacle mapped from

i
 is denoted by

i
 such that

  2

2i ii r r    x x p (11)

For the sake of simplicity, the pre-superscripts of p
i

and v
i
 are discarded to be p

i
 and v

i
 hereafter.

III. WHEEL VELOCITY OBSTACLES

In this section, we describe the WVO so that a

differential drive robot navigates to the destination

without collisions. We first introduce the concept of the

WVO and then elucidate how to construct them.

The wheel velocity obstacle |



i
WVO is defined as the

set of all the left-right wheel velocity pairs that would

induce a collision with obstacle i within time  . The

robot avoids colliding with i before time kt if the

348

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

   90 0
 

  
 

p R u

T
d

dt

new wheel velocity pair new new

, ,(,)L Rv v does not belong to

|



i
WVO at time

kt .

In contrast with the original velocity obstacle

suggested in [3], the overall shape of the WVO is

somewhat complicated due to the nonlinearity of the

robot’s motion. To derive it, we will divide it into two

sets according to the geometry of the robot’s path:

|



i
SWVO and |



i
CWVO such that

| | |

  
i i i

WVO SWVO CWVO .
|



i
SWVO is the

WVO when the robot moves along a straight line, and

|



i
CWVO is the WVO when it moves along a circular

curve. For the latter set, there must be a difference

between the static and dynamic obstacle. The following

three cases are analyzed accordingly.

A. Straight Line Path

First, we consider the case where the robot’s wheel

velocities are equivalent. To find the WVO region, we

review the concept of original velocity obstacles [3] since

the robot and obstacle move along a straight line path.

This region is represented as

     2

| ,   
i iSWVO v v v (12)

where ()  is the line such that

      0 0    v
i

T
v t v t (13)

here, velocity v is the x-coordinate of a point in the

intersection between the original velocity obstacle,

|



i
VO in [3], and the x -axis if and only if

  |, 
i

v v SWVO , as shown in Fig. 3.

X

Y

O

p
i

i
r r

1v 2v

i
r r



i

|



i
VO

Figure 3. The original velocity obstacle of [3] and the red line on the

x-axis. The red line is the range of v that satis-

fies   iv . Hence,

2

| 1 2{(v, v) | v v }    
i

SWVO v .

B. Circular Curve Path / Static Obstacle

Suppose the robot makes the circular path with radius

cr and avoids a static obstacle,
s

. In the robot’s

configuration space, the center of the path is at

(0,)pc cr . Fig. 4 shows the range of the path’s radius

that induces a collision between the robot and the

obstacle, as well as the angular position at which the

collision occurs.

Incidentally, the angular position,  , is defined

according to the robot’s wheel velocities. The angular

position is measured counterclockwise if 0w and

clockwise for all other cases. The zero angular position is

defined as the direction from pc to the origin.

X

Y

O

b1

cr

b2

cr

cr

s
 s

s


Collision
Spot

Figure 4. The range of the radius making the robot collide with obsta-

cle
s
 , and the collision spot where the collision occurs.

The boundaries of the forbidden radii, b

cr , satisfy the

following equation:

    
s s s

2 2
2 b b

, ,    x y c cp p r r r r (14)

From (14), we get

  

  
s s s

s s

2
2 2

, ,b

,2

  


 

x y

c

y

p p r r
r

p r r

 (15)

Let b1

cr and b2

cr denote the values of (15) such that
b1 b2c cr r . If the robot moves along a circular arc with

radius
cr where

   b1 b2 b1 b2 0  c c c c c cr r r r r r (16)

It will meet
s
 at some time in the future.

We are interested in whether the collision is generated

within time  when the radius satisfy (16). The collision

time must be calculated in accordance with the robot’s

velocities. We first compute the angular position of the

collision spot. When the robot’s wheel velocity pair

, ,(,)L Rv v is given,
s

 denotes the angular position of

the center of
s
 such that

      
s s

sgn sgn ,
2


     p pcw v (17)

where () v represents the angle of vector v to

coordinate axes, and v and w are calculated from (3).

s
 is given by the angular difference between the

center of
s

 and the collision spot with respect to pc
.

Using the second law of cosines,

   

 

s s s

s

s s

2 2
2 2

, ,

2
2

, ,

arccos

2


    

 

 

x y c c

c x y c

p p r r r r

r p p r

 (18)

where cr is from (4), and the angular displacement of the

collision spot is calculated by
s s

  from (17) and

349

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

(18). Hence, the wheel velocity obstacle
s|

CWVO is

now defined as

 

  
s

s s

2

| , , , ,

, ,

, , .


  

  

  

L R R L

R L

CWVO v v v v

l v v

  

  
s

s s

2

| , , , ,

, ,

, ,

.



  

  

  

L R R L

R L

CWVO v v v v

l v v

(19)

C. Circular Curve Path / Dynamic Obstacle

In this subsection, we extend the results of [7] and [10].

In [7], the Collision Band is defined as the zone swept by

the object moving along a straight line. Let
d

a denote a

vector that is perpendicular to the heading direction of

d
 and is directed against the origin such that

     
d d d d d 2

sgn 90 90  a p R v R v v
T (20)

where sgn() is the modified sign function such that

sgn(0) 1 . Also,
d ,b i , 1,2i refer to the contact points

between
d

 and the boundaries of the Collision Band

such that
d ,1b is on the boundary closer to the origin and

d ,2b is on the other line. Thus, the two points are

expressed as

  
d d d d,1   b p ar r (21)

  
d d d d,2   b p ar r (22)

Fig. 5 presents two red arcs,
1A and

2A , that shows the

intersection of the robot’s path and the Collision Band.

Let be a set of these arcs. The robot and the obstacle

do not meet each other in
iA , 1i  or 2 if the robot

enters
iA when the obstacle has just excited it or if the

robot escapes from
iA when the obstacle is entering it, as

mentioned in [7]. For this reason, we need to know when

the obstacle overlaps with
iA and where the robot enters

or exits from
iA . We will derive the wheel velocity

obstacle based on whether the robot is located in the

Collision Band or not

d
v

d
p

x

y

1p

2p

3p

4p

1

o

2

2A

1Acr

 d 1t

 d 2t

Collision
Band

 d 0

d ,1b

d ,2b

d
a

Figure 5.

The robot’s path and the collision band of the obstacle. The
red arcs are the intersection

between them. No collision occurs if

the robot arrives at
1p

after time

1t

or leaves from

2p before

time
2t .

If the Collision Band does not include the origin, the

number of the intersection arcs, () , varies depending

on the radius of the path.

  
d d d

d d d d d

,1

,1 ,2

0, ,

1, ,

2, otherwise.

  


   



p a b a

b a p a b a

T T

c c

T T T

c c

r

r (23)

We divide
d|

CWVO into
d| ,



iCWVO , 1,2i on the

basis of the number of the arcs where index i represents

() . We define the set 2i
 such that

, ,(,)L R iv v if and only if ()  i when the robot

moves with that velocity.

If () 1 , the obstacle meets from
1t to

2t . The

times
1t and

2t are calculated by
1 center ffset1  ot t t and

2 center ffset1  ot t t where

  
d d d

2

center
2

 p p v v
T

ct (24)

    d d d

d

2
2

ffset1

2

   



p p a

v

T

c c

o

r r r

t (25)

In order to find the angular positions
1 and

2 where

the robot enters or exits from the intersection,
offset1 must

be defined.

  d doffset1 ,1arccos  b p a
T

c cr (26)

Then
d1 offset1     and

d2 offset1     where

d
 is from (18). Thus, the wheel velocity obstacle is

expressed as

 
 

 

 

 

d| ,1 , , 1 1 2 0

1 2

, ,

2 1

, , 0, ,

2 2
.

min , max , 0

 

   



    

  
   



L R

R L

CWVO v v t t k

l k l k
v v

t t

 (27)

Here, the constraints that contain 0 and  such as

1 t are inserted for the collision generated within time

 . Since the motion of the robot along the circular path is

periodic, the terms of 2k are added.

If () 2 , put 1 center ffset1  ot t t ,

2 center ffset2  ot t t , 3 center ffset2  ot t t , and

4 center ffset1  ot t t

where

      d d d

d

22

ffset2

2

   



p p a

v

T

c c

o

r r r

t
 (28)

The obstacle overlaps with the intersection arcs after

1 2(,)t t t or 3 4(,)t t t .

Likewise, put
d1 offset1     ,

d2 offset2     ,

d3 offset2     , and
d4 offset1     where

  d doffset2 ,2arccos  b p a
T

c cr (29)

The robot is in the Collision band when its angular

position along the path is in the intersection
1 2(,)  or

3 4(,)  .

To derive the wheel velocity obstacle, each of the

angular position segments must be associated with the

relevant time segment. If
d d

sgn() (90) 0  a R v
Tw , the

350

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

obstacle moves counterclockwise with respect to the

origin in the robot’s configuration space. We define the

function :  where {1, 2, 3, 4} such that

() x x . If it does not, then the function  is defined as

() mod(1,4) 1   x x . Thus, the wheel velocity

obstacle is expressed as

 

  
 

  
 

 

  
 

  
 

d| ,2 , , 2 1 2 0

1 2

, ,

2 1

, , 2 3 4 0

3 4

, ,

4 3

, , 0, ,

2 2

min , max , 0

, , 0, ,

2 2
.

min , max , 0



 

 



   





   



    

  
   



    

  
   



L R

R L

L L

R L

CWVO v v t t k

l k l k
v v

t t

v v t t k

l k l k
v v

t t

 (30)

In the case when the collision band includes the origin,

  





 

 

d d d

d d d

d d d

d d d

,1

,2

,1

,2

0, min ,

1,

0,

2, otherwise.

  

  



   

    



p a b a

p a b a

p a b a

p a b a

T T

c c

T T

c

T T

c c

T T

c c

r

r

r

 (31)

When () 0 , the circle, not an arc, intersects with

the Collision Band. Therefore, the robot cannot escape

from the band. As a result, the wheel velocity obstacle is

   
d| ,0 , , 0 1 2, , 0    L RCWVO v v t t (32)

Suppose that () 1 . We calculate offset1 by

substituting
d

a of (26) with
d

a if

d d d,1| | p a b a
T T

c cr or by substituting
d ,1b with

d ,2b otherwise. Then put
d1 offset1     and

d2 offset1     . Afterward,
1 and

2 are adjusted

to be
1 [2 , 0)   and

2 [0, 2)  , respectively.

Finally, the wheel velocity obstacle
d| ,1

CWVO is given

by (27).

If () 2 , the condition that the function  is the

identity function is changed to , 0 
dc yr v .

d
a of (26)

is substituted with
d

a . Then we calculate i
,

1, , 4i and adjust them to be [0, 2) i . The

subscript of i
 is rearranged so that

2 3 4 1      ,

and
1 is in the range of [2 , 0) . Finally, the wheel

velocity obstacle
d| ,2

CWVO is obtained by (30).

In this section, we explain how the robot navigates

among the multiple obstacles to arrive at the destination

without collision.

We first define the observable wheel velocity obstacle

such that
| | ii

WVO WVO 




.

The set of the wheel velocity pairs that the robot can

reach in time t is denoted by
RRV . From the velocity

and acceleration constraints of the robot, RRV is

represented by

  
    

new new 2 max new new max

, , , ,

new new 2 new max

, , , ,

, ,

, , , .

    

    

R L R L R

L R j j

RV v v v v v v

v v v v a t j L R

 (33)

In addition, the reachable avoidance velocities is

denoted by
RRAV such that |\R RRAV RV WVO . If

the robot selects its new velocities in
RRAV , there are no

collision until time  has passed.

The robot’s preferred wheel velocities are determined

after its preferred linear and angular velocities are

calculated. The preferred angular velocity is

   pref goal goal2   p pw t (34)

where ()  is a non-decreasing function whose minimum

value is 1. In particular, when the destination is close

enough for the robot to arrive at the next time,  gets the

minimum value. The preferred linear velocity is

   pref goal lim prefmin , v d t v w (35)

where lim max pref() 2 | |  v w v l w , and
goald is the

distance between the robot and the destination such that

 

goal goal

, ,ygoal

goal goal goal

2

, if 0,

sin , otherwise.

 
 

 
p p p

xp p
d (36)

The preferred wheel velocities, pref

,Lv and pref

,Rv are

computed by using (3).

If
pref pref

, ,(,)L R Rv v RAV , the robot selects
pref pref

, ,(,)L Rv v as

the new wheel velocity pair new new

, ,(,)L Rv v . If not, the robot

should find the pair closest to pref pref

, ,(,)L Rv v in
RRAV .

Since the geometry of
RRAV is complicated, we adopt a

sampling method. First, we randomly sample candidates,

(,)i i

L R Rv v RV ,
sample1, ,i N . Next, the candidates in

|WVO
 are eliminated. Finally, the pair closest to

pref pref

, ,(,)L Rv v among remaining samples is chosen as
new new

, ,(,)L Rv v , as described in Fig. 6.

-2 -1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

3

4

5

6

7
Num : 10

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

v
R,L

 (m/s)

v
R

,R
 (

m
/s

)

The Wheel

Velocity Obstacle

The Velocity Constraint
Selected Velocity

The Acceleration

Constraint

Current

Velocity

Preferred Velocity

Figure 6. The observable wheel velocity obstacle and the process of
selecting a new velocity. The blue square is the velocity con-

straint, and the green square is the acceleration constraint. The
robot’s current velocity is indicated by the black mark and its pre-

ferred velocity is shown as the yellow star. Because the yellow

star is in the wheel velocity obstacle, we choose the red mark as
the new velocity,

351

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

IV. NAVIGATION AMONG MULTIPLE OBSTACLES

If RRAV , we remove the farthest obstacle from

 and redefine the
|WVO one by one until

RRAV . At worst, the closest obstacle makes

|WVO
 be empty. In this case, we set the time horizon

 as t .

V. SIMULATION

The implementation details are described in the

following. The simulation is performed in the Matlab

software on a PC equipped with Intel Core i7-3770

3.40GHz CPU and 8GB memory.

-2 -1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

3

4

5

6

7
Num : 10

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

v
R,L

 (m/s)

v
R

,R
 (

m
/s

)

Robot＇s

Destination

O1

O2

O3

O4

Robot

Figure 7. Screenshot of the robot’s navigation among 4 obstacles using
the wheel velocity obstacles. The number above the image shows

the number of trials.

As shown in Fig. 7, the simulation environment is a

two-dimensional indoor space of 7m by 7m, where a

Pioneer 3DX robot [11] moves toward the destination

while avoiding collisions. On the basis of the robot’s

datasheet, its parameters are assigned. The robot’s radius

r is considered as its swing radius 0.267m, and the

distance between the two wheels is 0.381m. In addition,

the maximum velocity of the robot is 1.2m/s, and the

maximum acceleration is 1.5m/s
2
. The maximum

detection distance d
 is 5m, the sampling period t for

robot control is 0.3s, and the predefined time horizon 

is 1.5s.

In the simulation space, obstacles move with given

random velocities. At each time instant, obstacles change

their velocity with probability
iOp . When the robot

escapes from the simulation space, its heading direction is

switched inwards to the space.

The Monte Carlo simulations are used to demonstrate

the performance of the wheel velocity obstacle approach.

We simulate the scenario consecutively for easier sample

generation. For example, when the robot reaches its

destination, the location of the destination is just

resampled. When the robot collides with some obstacles

in the simulation, the robot is placed in a newly sampled

location.

The performance of our algorithm is compared with

that of the algorithm [3], which controls a differential

robot as if it has no non-holonomic constraint. The total

number of scenario samples is 1000. The simulation

results are summarized in Table I. Although the average

computation time of our algorithm for each sample period

is somewhat longer than that in [3], it is not important

because the computation time is far shorter than the

sampling time. The success rate of the algorithm is much

higher than that in [3]. Therefore, it is confirmed that our

algorithm outperforms other algorithms in terms of safety.

TABLE I. SIMULATION RESULTS

Algorithm
Computation time

 per time step (ms)
Success rate (%)

Proposed 2.2 92.6

[3] 1.9 75.9

VI. CONCLUSION

In this paper, we derived the wheel velocity obstacle.

Since a differential drive robot has nonlinear motion, the

derivation process was divided into three cases according

to the robot’s trajectory and the mobility of obstacles. We

suggested a sampling scheme for the robot’s local

navigation utilizing the wheel velocity obstacle. The

proposed algorithm was shown to be superior in avoiding

the collisions according to the Monte Carlo simulations.

In future research, we will consider abrupt motion

changes of the obstacle since failures in the simulation

were induced by the abrupt changes of obstacle’s velocity.

We will also attempt to avoid collisions between robots.

ACKNOWLEDGMENT

This work was supported in part by the National

Research Foundation of Korea (NRF) grant funded by the

Korean government (MSIP) (No.2013R1A2A1A0500554

7), the Brain Korea 21 Plus Project, ASRI, the Industrial

Foundation Technology Development Program of

MOTIE/KEIT (Development of Collective Intelligence

Robot Technologies), and the Bio-Mimetic Robot

Research Center funded by the Defense Acquisition

Program Administration (UD130070ID).

REFERENCES

[1] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile

robots using potential field method,” Auton. Robot., vol. 13, no. 3,
pp. 207-222, Nov. 2002.

[2] Y. Zhu, T. Zhang, J. Song, X. Li, and M. Nakamura, “A new

method for mobile robots to avoid collision with moving obsta-
cle,” Artif. Life Robot., vol. 16, no. 4, pp. 507-510, Feb. 2012.

[3] P. Fiorini and Z. Shiller, "Motion planning in dynamic environ-
ments using velocity obstacles," Int. J. Robot. Res., vol. 17, no. 7,

pp. 760-772, July 1998.

[4] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R.
Siegwart, “Optimal reciprocal collision avoidance for multiple

non-holonomic robots,” in Distributed Autonomous Robotics Sys-
tems, vol. 83 of Springer Tracts in Advanced Robotics, A. Mar-

tinoli, et al. ed. Berlin, Heidelberg: Springer, 2013, pp. 203-216.

[5] D. Fox, W. B. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidance,” IEEE Robot. Autom, Mag., vol.

4, no. 1, pp. 23-33, Mar. 1997.

352

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

[6] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopoulos, “Nonho-
lonomic navigation and control of cooperating mobile manipula-

tors,” IEEE Trans. Robot. Autom., vol. 19, no. 1, pp. 53-64, Feb.

2003.
[7] E. Owen and L. Montano, "Motion planning in dynamic environ-

ments using the velocity space," in Proc. IEEE/RSJ Int. Conf. In-
tell. Robot. Syst., Edmonton, Albert, Canada, 2005, pp. 2833-2838.

[8] E. Owen and L. Montano, "A robocentric motion planner for

dynamic environments using the velocity space," in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., Beijing, China, 2006, pp.

4368-4374.
[9] D. Wilkie, J. V. D. Berg, and D. Manocha, “Generalized velocity

obstacles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., St.

Louis, MO, 2009, pp. 5573-5578.
[10] J. D. Jeon, H. W. Yu, and B. H. Lee, “Dynamic obstacle avoid-

ance of a differential drive robot using the velocity obstacles in
polar coordinates,” in Proc. 9th Korea Robot. Soc. Annu. Conf.,

Buyeo, Korea, 2014, pp. 271-274.

[11] Adept MobileRobots Pioneer 3-DX (P3DX). [Online]. Available:
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

[12] L. Zeng and G. M. Bone, “Collision avoidance for non-holonomic
mobile robots among unpredictable dynamic obstacles including

humans,” in Proc. IEEE Conf. Autom. Sci. Eng., Toronto, Canada,

2010, pp. 940-947.
[13] Y. Abe and M. Yonshiki, “Collision avoidance method for multi-

ple autonomous mobile agents by implicit cooperation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., Maui, HI, vol. 3, 2001, pp.

1207-1212.

Jae D. Jeon received the B.S. degree in
electrical engineering from Seoul National

University, Seoul, the Republic of Korea in

2011, where he is currently working toward
the Ph.D. degree with the Department of

Electrical and Computer Engineering. His
current research interests include multi-agent

system cooperation, multi-robot formation

control, and collision avoidance.

Beom H. Lee received the B.S. degree and
M.S. degree in electronics engineering from

Seoul National University, Seoul, the
Republic of Korea in 1978 and 1980,

respectively, and the Ph.D. degree in

computer, information, and control
engineering from the University of Michigan,

Ann Arbor, MI in 1985. He was an Assistant
Professor with the School of Electrical

Engineering at Purdue University, West

Lafayette, IN from 1985 to 1987. He joined Seoul National University
in 1987, and is currently a Professor with the Department of Electrical

and Computer Engineering. His research interests include multi-agent
system coordination, control, and application. Prof. Lee has been a

Fellow of the Robotics and Automation Society since 2004.

353

Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015

©2015 Engineering and Technology Publishing

