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Abstract—The artificial bee colony (ABC) algorithm is 

inspired by the behavior of honey bees. It is a relatively new 

optimization algorithm that has been proved competitive 

with conventional biology-inspired algorithms. The IABC 

algorithm is used, with the differential evolution (DE) 

algorithm added to the new solution search equation of ABC, 

to improve convergence speed. The IABC adopts the 

reward-based roulette wheel selection mechanism initially to 

divide all solutions suitably into feasible and infeasible 

solutions; thereafter, it divides them based on feasible and 

infeasible solutions for the implementation of incentives and 

punishments. Finally, the proposed method is applied to 

nonlinear system control problems. The experimental 

results of this study demonstrate the performance of IABC 

against that of other algorithms in nonlinear problems. 

 

Index Terms—artificial bee colony algorithm, differential 

evolution, neural fuzzy networks, nonlinear system 

problems, reward-based roulette wheel selection 

 

I. INTRODUCTION 

Neural fuzzy networks (NFNs) are powerful 

techniques and have been used to solve engineering 

problems [1]-[3] in recent decades. For the traditional 

TSK-type NFN [4], [5], the consequent part is a linear 

combination function of the input variables to complete, 

and its network output locally approximates the function 

of the target output. However, the consequent part of the 

traditional TSK-type NFN cannot be provided a complete 

mapping capability for highly nonlinear problems. In this 

paper, a specific NFN based on previous research is 

adopted [6], and the functional link neural network 

(FLNN) [7] is used to construct the consequent part. The 

consequent part of the specific NFN is used in the 

nonlinear combination of input variables mapped to the 

function expansion, which can increase the dimension of 

the input vector, and then simplify the creation of 

nonlinear decision boundaries and identification of 

complex nonlinear functions. 

Furthermore, methods have been developed to model 

the intelligent behaviors of a honeybee colony for solving 

combinatorial type problems [8], [9]. For optimizing 
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numerical functions, Karaboga introduced a bee swarm 

algorithm called the artificial bee colony (ABC) 

algorithm that simulates the foraging behavior of bees 

[10]. 

This study presents an improved artificial bee colony 

(IABC) for NFNs. The IABC method is a mixture of the 

original ABC algorithm and the DE algorithm, and allows 

the solution the opportunity to explore wider ranges. 

Moreover, the reward-based roulette wheel selection 

method was developed to replace the traditional roulette 

wheel selection method in IABC, which can strengthen 

the performance of the original ABC algorithm’s choice 

solution. 

II. NEURAL FUZZY NETWORKS 
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Figure 1.  Structure of the specific NFN. 

This section describes the specific NFN [6], wherein a 

complex nonlinear combination of the input variables is 

adopted as the consequent part of the fuzzy rules. The 

complex nonlinear combination of the input variables is 

generated by FLNN. Fig. 1 shows the structure of the 

specific NFN model which realizes a fuzzy if-then rule in 

the following form: 
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where xi is the input variable; 
j

ŷ is the output variable; 
Rule-j is the jth rule, Aij is the linguistic term of the 
precondition part with Gaussian membership function, N 
is the number of input variables, wkj is the link weight of 
the local output, 

K  is the basis trigonometric function of 
the input variables, and M is the number of basis 
functions. 

III. IMPROVED ARTIFICIAL BEE COLONY ALGORITHM 

FOR NEURAL FUZZY NETWORKS 

The IABC algorithm is a hybrid of the original ABC 

algorithm and the DE algorithm with an additional new 

incentive-based roulette selection, improving the 

following two points: 1) the mutation operation of the DE 

algorithm becomes an updated formula for the employed 

bees’ and onlooker bees’ mating operations; and 2) the 

reward-based roulette wheel selection was developed to 

replace the employed bee probability value calculation 

formula. The whole learning process of the IABC 

algorithm is provided: 

A. Initialization Food Source Positions 

1) Step 1: Coding step 

The coding step in IABC is the coding of the specific 

NFN into a solution. An example of NFN coded into a 

solution is shown in Fig. 2, where parameters 
ij

m  and 
ij

  

represent a Gaussian membership function with mean and 

deviation, with the ith input variable and jth rule. 

Moreover, 
ij

w  represents the weight corresponding 

parameters of the consequent part. 

m1j m2j w1j w2j….. mij ….. ….. wMj

Solution i

j1 j2 ij

Rule1 Rule2 ….. Rulej ….. RuleR

 
Figure 2.  Coding the specific NFN into a solution. 

2) Step 2: Initial population 

In the initialization step, the initial population of 

solutions is produced randomly within the range of the 

boundaries of the parameters. The operation can be 

represented as follows: 

 
jjjji

xxrandxx
min,max,min,,

]1,0[          (2) 

where i=1, 2,…, SN, j=1, 2,…, D. SN is the population 

size, D is the number of optimization parameters, jix ,  

represents the jth parameter of the ith solution, and 
j

x
min,  

and 
j

x
max,  

are
 
the

 
lower and upper bounds

 
of parameter j,

 
respectively.

 

B. Calculate the Nectar Amounts 

After the initialization phase, the fitness function is 

used to evaluate solution performance. In this study, good 

performance solutions have a lower fitness function. The 

fitness function is obtained using the following formula: 
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where 
k

y  represents the model output of the kth data, 
k

y  

represents the desired output of the kth data, and 
t

N  

represents the number of training data. 

C. Determine the New Food Source Positions for 

Employed Bees 

In IABC, each employed bee takes advantage of the 

DE mutation strategy to produce a new food source 

position (a solution), which allows the employed bee to 

have the opportunity to explore a wider range. The search 

equation used to calculate a new food source is as follows: 
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where F is a scaling factor; r1, r2, and r3 are randomly-
selected solutions in which irrr  321 ; t is the 
generation number; and )1,0[

j
rand  is the jth optimization 

parameters of a uniform random number generator. After 
each new food source position 

t

ji
v

,
 is produced, it is 

evaluated and greedy selection is used for comparison 
with the old food source t

ji
x

, . 

D. Calculate the Probability Value 

In this phase, the solutions are divided into feasible 

and infeasible solutions. A solution within the range of 

the search space is referred to as a feasible solution; 

conversely, a solution that deviates from the range of the 

search space is referred to as an infeasible solution. 

After all employed bees complete the feasible-

infeasible solution separation process, reward-based 

roulette wheel selection is used to calculate the 

probability value. The reward-based roulette wheel 

selection incentivizes the behavior of bees that obtained 

feasible solutions, and punishes the behaviors of those 

that obtained infeasible solutions. The probability value is 

calculated using the following form: 
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where 
1

SN  represents the number of the feasible solution, 

2
SN  represents the number of the infeasible solution, 

i
f  

is the fitness value of the ith feasible solution 
i

x , and 
i

v  

is the fitness value of the ith infeasible solution 
ix . A 

review of Eq.(5) shows that the feasible solution will be 

relatively large because of the way in which incentives 

affect the probability value, or because punishment 

diminishes the probability value of infeasible solutions. 

By calculating probability values using roulette wheel 

selection, the food source position for the onlooker bees 

is chosen. In roulette wheel selection, a larger probability 

value has a higher opportunity for selection, and a smaller 

probability value has a lower opportunity for selection; 

thus, feasible solutions are chosen more often than 

infeasible solutions are. 

E. Determine the New Food Source Positions for 

Onlooker Bees 

In this phase, after all the onlooker bees disperse to the 

food source positions, they use the same DE mutation 

strategy (4) to produce new food source positions and 

evaluate them. This process will also provide onlooker 

bees with the opportunity to explore a wider range. After 

locating every new food source position, greedy selection 

is used for comparison with the older source. 

F. Produce New Positions for the Exhausted Food 

Sources 

In IABC, a predetermined number of cycles must 

initially be set, which is called a “limit”. Moreover, if a 

food source position cannot be further improved and 

exceeds its predetermined “limit”, the food source is 

considered an abandoned solution. Thereafter, the scout 

bee discovers a new food source position to replace. This 

operation is defined in (3). 

G. Memorize the Position of the Best Food Source 

In the final phase, if the fitness value of any bee food 

source is better than the fitness value of the best food 

source position thus far, the new food source position 

replaces the best food source position. 

IV. EXPERIMENTAL RESULTS-APPROXIMATION OF THE 

PIECEWISE FUNCTION 

This example is the approximation of a signal variable 

piecewise function, which has been studied frequently in 

the literature. This function is defined as follows: 
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The piecewise function is continuous and analyzable. 
However, it is inefficient and often fails when using 
traditional analytical tools. This failure may result 
because wide-band information is not only hidden at the 
turning point, but is also the coexistence of linearity and 
nonlinearity. 

In this example, the sample data is distributed 

uniformly over [-10, 10], and 200 points are selected as 

training data. Ten fuzzy rules are applied to the NFN in 

this example. The maximal number of fitness function 

evaluations (Max_NFFEs) is set as 5000 for each method 

and was repeated 30 times with different random seeds. 

The final mean root-mean-square error (RMSE) of the 

IABC method is approximately 0.1824. The learning 

curves of the average performance of all algorithms are 

shown in Fig. 3.  

A comparison of the results of the best RMSE and 

mean RMSE with standard deviation (Std Dev) between 

IABC and the other methods is shown in Table I. Table I 

shows that the performance of IABC with respect to 

RMSE is evidently better than those achieved using other 

methods. 

 

Figure 3.  Learning curves of average performance of the DE, ABC, 

MABC, GABC, and IABC. 

TABLE I.  COMPARISON OF RESULTS OBTAINED BY THE DE, ABC, 

MABC, GABC 
AND IABC ALGORITHMS. 

Method DE ABC MABC GABC IABC 

Best RMSE 0.6361 0.6189 0.3633 0.2379 0.0661 

Mean 
RMSE 1.117 1.1708 0.8671 0.5496 0.1824 

Std Dev 0.0585 0.0861 0.1072 0.1002 0.0304 

V. CONCLUSION 

This study proposed an IABC algorithm for the 

specific NFN to solve nonlinear control problems. The 

mutation strategy of DE was adopted in the proposed 

IABC algorithm to produce a new food source for the 

employed and onlooker bees, and the reward-based 

roulette wheel selection was used to make the better 

feasible solutions has a higher opportunity to be 

improved. The simulation results show that IABC can 

solve the problem in the experiment efficiently, and 

achieves a better performance than other existing 

algorithms. 
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