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Abstract—A nonlinear filter called the iterated modified 

gain extended Kalman filter (IMGEKF) is presented in this 

paper. This filter uses bearings only measurements to 

estimate the target state in passive target tracking scenario. 

This work combines the MGEKF and the iteration method. 

The filter utilizes the updated state to re-linearize the 

measurement equation. Then the proposed work is tested in 

a two dimensional scenario. The simulation study compares 

the IMGEKF and some other filters to show the 

improvement. 

 

Index Terms—surveillance, target tracking, nonlinear 

estimation, bearings only, iteration method 

 

I. INTRODUCTION 

Target tracking problem arises in a variety of practical 

applications, such as antimissile, aircraft surveillance and 

GPS. The single and multiple target tracking algorithms 

are proposed to solve the tracking problem. The target 

tracking problem considers both linear and non-linear 

measurements. 

The bearings only target tracking is broadly used in 

many passive tracking applications. Typical examples are 

submarine tracking using a passive sonar or satellite to 

satellite passive tracking using a radar in passive mode 

[1], [2]. The bearings only target tracking is an inherent 

non-linear state estimation problem. 

The basic problem in bearings only target tracking is to 

estimate the target state (usually position and velocity) 

from noise corrupted angle data. For a single sensor 

tracking scenario, the angle data are obtained from a 

single moving observer. The problem of observability of 

the target parameter in passive localization is 

demonstrated in [3]. To make the target observable, 

careful designed maneuver must be applied to the 

observer. Some good principles for generating the 

observer maneuver are given in [4] and [5]. So far, most 

articles in the bearings only tracking field assumed the 

target moved with a constant velocity [6], [7], [8]. As for 

tracking a maneuvering target, very limited research has 

been published in the open literature. 

Due to the inherent nonlinearity and observability 

problem, it’s not easy to construct an optimal Bayesian 

filter. But a lot of nonlinear filters have been put forward 
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to solve the nonlinearity problem involved in bearings 

only measurements. The most widely used in practice is 

the Extended Kalman filter (EKF). This filter linearizes 

nonlinearities through the Taylor series expansion at the 

predicted target state. The EKF requires evaluation of the 

Jacobians of the nonlinear dynamics and measurement 

equations. The iterated extended Kalman filter (IEKF) 

computes the updated state not as an approximate 

conditional mean but as a maximum a posteriori (MAP) 

estimate [3]. The unscented Kalman filter (UKF) samples 

and propagates the probability density function using a 

small number of deterministically chosen samples [9]. 

The particle Filter (PF) samples non-linear probability 

density function by a set of random (Monte Carlo) 

samples [10].  

The MGEKF is designed for target motion analysis 

(TMA) with nonlinear bearings only measurements [11]. 

It requires that the measurement function is ‘modifiable’ 

which implies a universal linearization can be achieved. 

The concept of “modifiable” also applies to nonlinear 

dynamic systems in [12]. The “modifiable” function 

plays an important role in developing the structure of the 

filter and this will be presented in section III.  

Based on the MGEKF framework, the iterated 

modified gain extended Kalman filter (IMGEKF) is 

developed in this paper. This filter uses the updated state 

to re-linearize the measurement function to get the new 

updated state and the corresponding covariance. The 

modified function is used to obtain an approximation in 

linearizing the measurement function. The IMGEKF and 

the IEKF are very similar to each other as both of them 

focus on the linearization and use the iteration procedure. 

But the IEKF uses the Taylor expansion and the 

IMGEKF uses the modified function to carry out the 

universal linearization. So, performance comparison is 

made among the EKF, the IEKF, the MGEKF and the 

IMGEKF in the simulation study part.  

This paper first defines the single sensor bearings only 

target tracking model in section II. In section III, the 

modified function and the structure of the IMGEKF are 

demonstrated in detail. In section IV, the IMGEKF is 

applied to a two dimensional bearings only measurement 

problem to show the improvement.  

In this paper, we evaluate the state estimation 

capability of the IMGEKF used in single sensor bearings 

only tracking scenario. The target exists and is detected at 

every scan. To summarize, the contributions of this paper 
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are: (1) it presents a solution of single sensor bearings 

only tracking, using the IMGEKF developed in this paper, 

(2) this solution is compared with some other methods, 

and with the Cramer-Rao lower bound. 

II. MATHEMATICAL MODEL 

A two dimensional bearings only measurement case is 

defined in the Cartesian coordinates. A single moving 

observer measures the direction of target emissions at 

known times indexed by k. A sample relative 

measurement geometry relationship is illustrated in Fig. 

1.  is the measurement and c  is the target course at 

current time. In order to make the target observable, we 

need to make our observer motion model (at least in some 

interval) at least one derivative higher than the target 

motion [4]. The target moves at a constant velocity, so 

the observer has to have at least one maneuver to make 

the target observable.  

 

Figure 1.  Relative measurement geometry 

The target motion is modelled as 

 1 1 1            (1)k k k kx f x v   
   

  (1) 

where 1kx   is target state vector at time 1k  , 1kv   is a 

zero mean, white Gaussian process noise with the known 

variance  

[ ] 0 (2)kE v 
               

(2) 

 [ ] , (3)T

k j kE v v Q k j
             

    (3) 

where  ,k j  is the Kronecker delta function and 
kQ  is 

the process noise covariance matrix.  

The measurement model is 

                         (4)
k k k kz h x w 

               (4) 

where 1( ) tan ( / )h x y x  and kw  is a zero mean, white 

Gaussian measurement noise with the known variance 

[ ] 0 (5)kE w 
            (5)

 

 [ ] , (6)T

k j kE w w R k j
          (6) 

where 
kR  is the sensor additive noise covariance matrix. 

It is assumed that the measurement noise and the 

process noise sequence are uncorrelated. 

III. THE INTERATED MODIFIED GAIN EXTENDED 

KALMAN FILTER (IMGEKF) 

In this section, the IMGEKF is developed on the basis 

of the MGEKF and the iteration method. As stated in [12], 

the gain algorithm of the MGEKF is altered from  

that of the modified gain extended Kalman observer 

(MGEKO) in order to reduce the biases due to direct 

correlations between the gain and residual in stochastic 

environments. This thought is kept in developing the 

IMGEKF structure. 

The stochastic case given in section II where the 

system dynamic is linear and measurement is non-linear. 

1 1                    (7)k k kx Fx v  
                (7) 

                      (8)k k kz h x w 
                

(8) 

Assume that the process noise and measurement noise 

have a constant covariance Q and R, respectively. 

Definition 1: A time-varying function : m nh R R  is 

modifiable if there exists an   n m  time-varying matrix 

of functions : n m n mg R R R   so that for any x , 

mx R  and k Z , 

      *, (9)h x h x g z x x x  
    

(9) 

where  *z h x . 

The difference    h x h x  is equal to  *,g z x   

 x x  without any approximations.  h x  means the 

angle is generated from the true target state x. However, 

the true target state is not available in a practical 

estimation problem due to the process and measurement 

noise. So, the measurement z  will be used instead of 
*z  

in linearizing the measurement function. 

The main idea of the IMGEKF is to re-linearize the 

predict measurement | 1
ˆ

k kz 
 around the updated state. 

This thought consents that the updated state contains 

more effective information of the target. During the 

unobservable period, the iteration depends on the updated 

state which may have a big error compared with the true 

target state. This condition leads the tracking to a wrong 

direction and finally makes the filter divergent. So, a 

good suggestion is that using the iteration method after 

the target become observable. 

The IMGEKF structure is derived here. At time k the 

updated state 1| 1
ˆ

k kx  
 and the corresponding covariance  

1| 1k kP  
 are given. 

In the iteration, the superscript
 

“i”
 

is the iterative 

number where  1,2,3,...,i n n Z  . “n”
 

is decided 
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either a priori or based on a convergence criterion. When 

i=1, 
1

|
ˆ i

k kx 
 is the predicted state | 1

ˆ
k kx  .  

Then the state update step is 

| 1 1| 1            ˆ ˆ         (10)k k k kx Fx  
                        (10)

 

 | | 1 | 1             (1ˆ ˆ 1ˆ )i i i

k k k k k k kx x K z z   
               (11)

 

where |
ˆ i

k kx  and | 1
ˆi

k kz   are the updated state and 

measurement prediction in the ith iteration. 

 1 1

| 1 |ˆ |i k k

k k k k kz E z Z E h x w Z 


        

 

    1 * 1 1 1

| | |
ˆ ˆ ˆ, |i i i k

k k k k k k k kE h x g z x x x Z      
 

 

1 1 1

| | | 1 |( ) ( , )( ) (12ˆ )ˆ ˆ ˆi i i

k k k k k k k k kh x g z x x x  

  
              

(12)

 

To get the final form of | 1
ˆi

k kz   in (12), the assumption 

that kw  is zero mean and the modifiable function (13) 

are used. 

      1 * 1 1

| | |, (13)ˆ ˆ ˆi i i

k k k k k k k k kh x h x g z x x x    
   (13) 

 1

|
ˆ, i

k k kg z x 
 is calculated as 

 1

| 1 1
ˆ

ˆ

sin , cos ,0,0
, (

ˆ
14)

cos sin

i i k k
k k k i i

k k

z z
g z x

y z x z


 

 
  

          
(14)

 

where 

 1

|             
   (15ˆ )i i

k k kz h x  
               

  (15) 

1 1          ˆ          (1ˆ 6)ˆi i

t oy y y  
                      

(16) 

1 1         ˆ           )ˆ  (17ˆi i

t ox x x  
                    

(17) 

1ˆ i

ty 
 and 

1ˆ i

tx 
 are the elements of target state 

1

|
ˆ i

k kx 
 in y 

and x direction, respectively. ˆ
oy  is the element of 

observer state in y direction and ˆ
ox  is the element of 

observer state in x direction. 

In the iteration, the measurement kz  is always used to 

approximate the 
*

kz  in the modified function. 

The iterated state update is 

 1

| | 1 |((ˆ ˆ ˆi i i

k k k k k k kx x K z h x 

    

  1 1

| | 1 |
ˆ ˆ ˆ, ) (18)i i

k k k k k k kg z x x x 

 
                    

(18)

 

The iK  is the gain sequence calculated as 

| 1 1| 1                 (19)T

k k k kP FP F Q   
                       (19) 

   1 1

| | 1 |
ˆ ˆ     (20)

T
i i i

k k k k k kS H x P H x R 

 
             (20)

 

   
1

1

| 1 |              (2ˆ 1)
T

i i i

k k k kK P H x S





              (21)

 

where 

 
 

1
|

1

ˆ| |ˆ (22)i
k k

i

k k x x

h x
H x

x









                   (22)

 

Is the Jacobian calculated at the iterated state 
1

|
ˆ i

k kx 
. 

To calculate the covariance of the updated state, the 

measurement noise is taken into consideration to make it 

more accurate. 

The measurement residual error is calculated as  

   1

| 1 |
ˆˆi i

k k k k k k kz z h x w h x 

     

  1 1

| | 1 |
ˆ ˆ ˆ, (23)i i

k k k k k k kg z x x x 

 
                        (23)

 

The modified function is used here to make an 

approximation  

      1 1 1

| | |
ˆ ˆ, (24)ˆi i i

k k k k k k k k kh x h x g z x x x       (24) 

after that, the iterative form of the measurement residual 

is 

  1

| 1 | | 1
ˆ ˆ 2,ˆ ( 5)i i

k k k k k k k k k kz z g z x x x w

    
   (25)

 

The updated state can be expressed as 

  1

| | 1 | | 1
ˆ ˆ ˆ ˆ,i i i

k k k k k k k k k kx x K g z x x x

   
 

(26)

i

kK w

                                   
(26)

 

The updated state estimate error is defined as 

| | ̂ ˆi i

k k k k ke x x  

    1

| 1 | | 1
ˆ ˆ ˆ,i i

k k k k k k k k kx x K g z x x x

      

(2 )

*

7

i

kK w

                                                 (27) 

The covariance is given by 

| | |  [ ]ˆ |ˆi i i T k

k k k k k kP E e e Z  

     1 1

| | 1 |= , ,ˆ ˆ
T

i i i i

k k k k k k k kI K g z x P I K g z x 

   

(28)

i iTK RK

                                                  
(28)

 

where 

 , 1, , (29)k

nZ z n k 
                

(29) 

Denotes the measurement sequence up to time k. 

Equation (18) is used to obtain the updated state and 

(26) is just used to calculate the updated covariance. 

TABLE I demonstrates the difference between the 

MGEKF and the IMGEKF. 

477

Journal of Automation and Control Engineering Vol. 3, No. 6, December 2015

©2015 Engineering and Technology Publishing



TABLE I.  STRUCTURE COMPARISON OF MGEKF AND IMGEKF 

Structure 
Comparison 

Approach 

MGEKF IMGEKF 

Structure 

State update: 

| 1 1| 1
ˆ ˆ

k k k kx Fx    

 | | 1 | 1
ˆ )ˆ ˆ (k k k k k k kx x K z h x     

Gain sequence: 

   | 1 | 1 | 1
ˆ ˆ  

T

k k k k k kS H x P H x R     

  1

| 1 | 1
ˆ  

T

k k k kK P H x S 

   

Covariance update: 

| 1 1| 1

T

k k k kP FP F Q     

  

  

| | 1 | 1

| 1,

ˆ

ˆ

,k k k k k k k

T
T

k k k

P I Kg z x P

I Kg z x KRK

 



 

  

 

State update: 

| 1 1| 1
ˆ ˆ

k k k kx Fx    

    1 1 1

| | 1 | | | 1 |
ˆ (( ,ˆ ˆ )ˆ ˆ ˆi i i i i

k k k k k k k k k k k k k kx x K z h x g z x x x  

       

Gain sequence: 

   1 1

| | 1 |
ˆ ˆ

T
i i i

k k k k k kS H x P H x R 

   

 1 1

| 1 |
ˆ ( )

T
i i i

k k k kK P H x S 

  

Covariance update: 

| 1 1| 1

T

k k k kP FP F Q     

  

  

1

| | | 1

1

|
ˆ,

ˆ,i i i

k k k k k k k

T
i i i iT

k k k

P I K g z x P

I K g z x K RK





 

 
 

 

IV. SIMULATION STUDY  

The scenario is illustrated in Fig. 2. A single target 
follows a constant velocity. A single observer tracks the 
target and performs a maneuver to make the target 
observable in the tracking period. The target speed and 
initial target to sensor distance are 10m/s and 10km, 
respectively. The observer scan time is 5s and the total 
surveillance time is 1200s. The measurements are the 
angles corrupted with a white zero mean Gaussian noise 
with standard deviation 1.̊ The initialization method 
which can be found in [13] is used for all filters. 

The initial observer state is given by 

0, 0, 5, 0 (30)ob ob xob yobx y v v   
           

(30) 

-4000 -2000 0 2000 4000 6000 8000
-1000

0

1000

2000

3000

4000

5000

6000

7000

X(m)

Y(m)

target start

observer start

 

Figure 2.  Note how the caption is centered in the column. 

From scan 81 to 160 the velocity of observer is 

changed to 0, 5xob yobv v  . After 160 scan, the velocity is 

changed to 5, 0xob yobv v  . 

The process noise covariance is given by 

4 3

2 2

3 2

2 2

0.25 0.5
            (31)

0.5

T I T I
Q q

T I T I

 
  

                       

(31) 

For the stochastic environment, the results of 500 runs 

of Monte Carlo simulations are presented in Fig. 3 and Fig. 

4. Each run contains 240 scans. The scan time is 5s during 

the surveillance time interval 0s to 1200s.  

The measurement in the first scan is used for 

initialization in each run, coupled with the prior range pdf 

which is assumed Gaussian, with a mean of 15620m, and 

standard deviation of 6000m. The prior target speed is 

assumed Gaussian, with a mean of 11m/s and standard 

deviation of 1.2m/s. The prior target course is also 

assumed Gaussian, with a mean of   and standard 

deviation of / 12 . The q is equal to 2 30.00001 /m s in 

this scenario which means that the process noises are the 

same in x and y direction. 

In this simulation, at each scan we just do 2 iteration 

which means i=1,2 in (10)-(28). If iteration method is 

used in all the scans, the tracking results show us the 

divergent problem. This problem partly due to the target is 

not observable in the front scans. So we will take use of 

the iteration method after some scans that the observer 

performed maneuver which can reduce the influence of 

target non-observable. In this scenario, the observer 

performs maneuver form 81 to 160 scan. So, first the 

MGEKF is used in the front 100 scans. After 100 scan, the 

IMGEKF is used. The same process is applied to the EKF 

and the IEKF. 
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The IMGEKF is compared with the EKF, the IEKF 
and the MGEKF. The Cramer-Rao lower bound (CRLB) 
is presented here as a lower limit. Root mean square 
(RMS) errors over time and the CRLB are demonstrated 
in Fig. 3. In Fig. 4, the RMS errors in last 90 scans and 
the CRLB are presented. In front 80 scans the error 
progressively reduced as the observer get the information 
of the target. At scan 80, the observer turned a ninety 
degree bend which made the target observable. Then, the 
IMGEKF and the IEKF method are applied after 100 
scan. The IMGEKF and the IEKF both had improvement 
on the MGEKF and the EKF, respectively. In this 
scenario, the IMGEKF had the best performance. 
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Figure 3.  RMS estimation error 
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Figure 4.  RMS estimation error 

V. CONCLUSIONS  

This paper presents an iterative method based on the 
MGEKF to track the target using bearings only 
measurements. It linearizes the measurement function in a 
new way compared with the EKF and MGEKF. The 
updated state is used to re-linearize the nonlinear 
measurement function. This process intended to use more 
information of the target state in each scan.  

The IMGEKF is applied to the two dimensional bearing 
only measurements scenario. Both the IEKF and the 
IMGEKF face the divergent problem which should be 
processed carefully. The simulation results verify the 
IMGEKF and compare it with the EKF, the IEKF and the 
MGEKF. One can’t draw definitive conclusions after a 
limited set of experiments. But the simulation results give 
us a good suggestion when we face the similar problem.  

As future work we consider to extend the proposed 

work to the three dimensional scenario which is more 

practical. Another thing is to find some method to deal 

with the divergence problem.  
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