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Abstract—This paper presents an adaptive backstepping 

controller for a class of multi input multi output (MIMO) 

underactuated system, with uncertain dynamics, in its 

original nonsquare form. The proposed controller combines 

a wavelet based backstepping controller and a robust 

control term to obtain the desired tracking performance. 

Proposed scheme utilizes the concept of regularized inverse 

for effective decoupling of subsystems. Uncertain system 

dynamics is estimated by using wavelet network. The 

wavelet parameters are tuned online using Lyapunov 

approach. The overall control scheme guarantees the 

ultimate upper boundedness of all closed loop signals. 

Finally a simulation study is carried out to demonstrate the 

effectiveness of proposed control scheme. 

 

Index Terms—MIMO systems, underactuated systems, 

backstepping control, adaptive control, wavelet network  

 

I. INTRODUCTION 

In recent years, significant development has been 

reported in the field of adaptive controller design for 

nonlinear multivariable systems.  However, most of these 

control schemes are proposed for conventional 

multivariable systems where number of output is equal to 

number of inputs [1]-[3]. Recently, the researchers are 

inclined towards to the controller design for 

underactuated systems, which are characterized by the 

fact that they have lesser number of actuators than the 

degrees of freedom to be controlled [4]. This 

underactuation property has been displayed by several 

real time systems like spacecraft, underwater vehicle, 

twin rotor systems etc. Due to their underactuation 

property these systems are associated with complicated 

controller design and due to lesser number of actuators 

the controller schemes of fully actuated systems can’t be 

applied directly to this class. Researchers have developed 

control schemes for this class of nonlinear systems [4], 

[5]. Few research findings on adaptive control schemes 

for uncertain underactuated systems have also been cited 

in the literature [6]-[8]. 

                                                 

Manuscript received July 1, 2014; revised September 28, 2014. 

Back stepping design offers a systematic framework to 

design tracking and regulation control schemes for a 

wide class of state feedback linearizable nonlinear 

systems [9]. One of the distinguishable feature of this 

scheme is to shape performance. The conventional 

backstepping approach can suitably extended to 

uncertain nonlinear systems via adaptive backstepping 

[10]-[12]. 

Due to their universal approximation property neural 

networks have been proved as a promising tool for 

identification and control of dynamical systems. 

Application of neural network as system identification 

tool has greatly relaxed the constraint applied on 

nonlinearities to be linear in parameter thereby 

broadening the class of the uncertain nonlinear systems 

which can be effectively dealt by adaptive controllers. 

Several researchers have combined the conventional 

feedback control approaches with adaptive neural 

networks so as to achieve the desired performance by 

effective mitigation of uncertain dynamics [13].  

During last decade, some researchers have proposed 

wavelet neural network as system identification tool. 

These networks use translated and dilated versions of 

some wavelet as activation function in the frame of a 

single layer feedforward neural network.    Theses 

wavelet bases due to their space and frequency 

localization properties posses superior learning capability 

and training algorithm for wavelet network convergence 

rapidly in comparison to conventional neural networks. 

Furthermore, orthonormality of wavelet bases assures a 

unique and most efficient wavelet network [14], [15]. A 

wavelet network thus combines the learning ability of 

neural network with wavelet decomposition for 

identification and offers a better performance than 

conventional neural network [16]. 

In this paper, a wavelet adaptive backstepping 

controller is proposed for a class of uncertain multiple 

input multiple output underactuated systems. The 

tracking control scheme presented in this paper consists 

of a wavelet based adaptive backstepping controller and 

a robust control term. Proposed control strategy 

combines the advantages of wavelet networks for 

approximating unknown system dynamics with 
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conventional backstepping control. To deal with the 

singularity issues of input gain matrix regularized matrix 

inversion is used. A robust controller is added for 

effective attenuation of the uncertainties inducted by 

wavelet approximators and error introduced by 

regularized inverse.  

This paper is organized as follows. Problem under 

consideration is presented in section II. Design issues of 

wavelet adaptive backstepping controller and robust 

control term are discussed in first two subsections of 

section III, whereas approximation properties of wavelet 

network and tuning laws for online estimation wavelet 

parameters along with stability issues are discussed in 

next two subsections. A simulation study, to illustrate the 

effectiveness of proposed scheme is carried out in 

Section IV, whereas Section V gives the conclusion on 

the work developed in this paper. 

II. PROBLEM STATEMENT 

Consider the following underactuated system of the 

form [8] 

       

       

       
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2 2 21 1 22 2 2
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p p

p p

n n n n np p
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f x g x u g x u g x u

f x g x u g x u g x u

f x g x u g x u g x u

y

y

y
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 

 





















     

     




    







 

  (1) 

where   2,
T nx     are system states with 

 1 2, ,
T

n     and  1 2, ,
T

n     while 

1 2[ , , , ]T p

pu u u u   and 
1 2( ) [ ( ), ( ), , ( )] n

ny t y t y t y t   

are input and output vectors respectively. System under 

consideration belongs to the class of underactuated 

systems with n p . 

Here  1 2( ) ( ), ( ), ( ) n n

nf x f x f x f x    is a vector 

of smooth unknown nonlinear functions of states 

whereas and 
1 2( ) [ ( ), ( ), , ( )]T n nxp

ng x g x g x g x    

with 
1 2( ) [ ( ), ( ), , ( )]T

i i i ipg x g x g x g x  represents the 

nonlinear gain matrix and is assumed to be partially 

unknown and satisfying following assumptions: 

A. Assumption 1 

Function ( )ijg x  is always bounded away from zero 

with a known bound so that 

( ) 0   ; 0; 1,2, , ; 1,2, ,ij ij xg x g x S t i n j p      
 

where 2n

xS  is some compact set of allowable state 

trajectories.  

It implies that ( )ijg x is strictly positive or negative. 

B. Assumption 2 

Sign of function ( )ijg x  is known. 

Thus the system (1) can be expressed as 

   

                                                    (2a)

                                 (2b)f x g x u

 






 
 

Objective is to utilize backstepping technique so that 

the system states   are able to track the desired 

trajectories n

d   with tracking errors converging to 

small neighborhood of origin. The desired trajectories 

d  assumed to be smooth, continuous and available for 

measurement. 

III. WAVELET ADAPTIVE BACKSTEPPING 

CONTROLLER 

A. Pseudo Control Design 

From (2a), the dynamics of the tracking error 

de     1 2, ,
T

d ne e e e   is given by 

de                                  (3) 

From (3), defining the pseudo control inputs 
d  as 

d dke                        (4a) 

n

d                       (4b) 

where  1 2, , , ;  0, 1, ,n ik diag k k k k i n    

Then (3) becomes  

e ke                               (5) 

Choosing the Lyapunov function as 

1

2

T

eV e Pe                            (6) 

where nxnP  is a positive definite symmetric matrix. 

From (5) the time derivative of 
eV  is given by 

T T

eV e Pke e P                   (7) 

B. Backstepping Controller Design 

From (2b) and (4b), the time derivative of  is given 

by 

      df x g x u               (8) 

Considering  f x and  g x  to be the unknown 

dynamics of the system (1). Let  f̂ x and  ĝ x  be the 

estimates of  f x and  g x respectively. To tackle the 

problem of singularity for ˆ ˆTgg concept of regularized 

inverse [2, 3, and 8] is used in this work. 
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1 1ˆ ˆ ˆ ˆ( )T Tg g I gg                    (9) 

where  is a small positive constant and I is a xn n  
identity matrix.  

Then control law is defined as 

1ˆ ˆ ˆ( ) ( )T T

b ru g I gg u u          (10) 

where n

bu  is the principle control component derived 

using backstepping methodology [9] while n

ru  is the 

robust term incorporated for effective attenuation of 

uncertainties. These control terms are defined as  

  1ˆ
b du f x Q R Pe                 (11) 

where nxnQ  and nxnR  are positive definite 

symmetric design matrices. 

 1

2
ru

 



 
 


                       (12) 

where   is the prescribed attenuation[17]. 

C. Wavelet Approximator and Tuning Laws 

To estimate the nonlinear functions  f x  and  g x  

wavelet networks are used.  Output of an n dimensional 

wavelet network with m nodes is [12]  

 , ,Tz x w c                 (13) 

where  1 2, ,...,
T n

nx x x x R   is the input vector, 

, ...,
T m

m 
        are wavelet functions while; 

 , ,...,
T mxn

mw w w w R    and , ...,
T mxn

mc c c c R 
     

are dilation and translation parameters and 

 ,..,
T m

m R      are weights of wavelet and 

bias function respectively. 
Let *z  be the optimal function approximation using an 

ideal wavelet approximator then   

* * *Tz z                 (14) 

where  * * *, ,x w c   and * *,w c  are the optimal 

parameter vectors of ,w c respectively and   denotes 

the approximation error and is assumed to be bounded by 
   ,in which   is a positive constant.  

Optimal parameter vector is constant and is needed for 

best approximation of the function, however it is difficult 

to obtain optimal function approximation so defining an 

estimate function as 

ˆ ˆˆ Tz                               (15) 

where  ˆ ˆ ˆ, ,x w c   and ˆ ˆ ˆ, ,w c  are the estimates of  

* *, ,w c respectively. Defining the estimation error as: 

* ˆ ˆˆ ˆ T T Tz z z z z             (16) 

where ˆ ˆ         

By properly selecting the number of nodes, the 

estimation error z  can be made arbitrarily small on the 

compact set so that the bound z  ≤
mz holds for all 

x [12].  

Applying Taylor expansion linearization technique for 

transforming (16) to partially linear form, 

1 1 1

T TA w B c h                      (17) 

where * *ˆ ˆ,w w w c c c    and
1h  is a vector of higher 

order terms and  

1 2 1 2

1 1

ˆ ˆ

, ,..., , ,...,m m

w w c c

d dd d d d
A B

dw dw dw dc dc dc
 

       
    
   

 

with 

1 2

1 2

ˆ ˆ ˆ ˆ
0...0 , ,..., ,0...0

ˆ ˆ ˆ ˆ
0...0 , ,..., ,0...0

T

i i i i

i i ni

T

i i i i

i i ni

d d d d

dw dw dw dw

d d d d

dc dc dc dc

    
  
 

    
  
 

 

Substituting (16) into (17) 

  1 1 1
ˆ ˆ ˆˆ ˆT T T T Tz w B c w A c B         (18) 

where the uncertain term is given by following 

expression 

 * *

1 1 1

T T T T Th A w B c           (19)  

Approximation of  f x and  g x : Using wavelet 

neural network uncertainties  f x and  g x  can be 

approximated as 

       1 2
ˆ ˆ ˆ ˆ ˆ ˆ, ,

T
T

n f ff x f x f x f x    
 

   (20) 

where 
1 2

ˆ ˆ ˆ ˆ[ , ]f f f fn     with 
1 2

ˆ ˆ ˆ ˆ[ , ]T

fi fi fi fim      

so  ˆ ˆ ˆT

i fi ff x    , 1, ,i n  

 

   

   

11 1

1

ˆ ˆ

ˆˆ

ˆ ˆ

p

T

g

n np

g x g x

g x

g x g x

 
 

    
 
 

      (21) 

where 
11 1

1

ˆ ˆ

ˆ

ˆ ˆ

n

p np

g g

g

g g

  
 

   
  
 

with 

1 2
ˆ ˆ ˆ ˆ[ , ]T

gab gab gab gabm     and 

ˆ 0 0

ˆ0 0

ˆ0 0

g

g

g

 
 


  
 
 

  

 

so   ˆ ˆˆ T

ab gab gg x    ,  1, , ;   b 1, ,a n p 
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Proposed tuning laws for wavelet networks used to 

approximate  if x and  ig x  are:  

1) Adaptation laws for the wavelet networks used to 

approximate  f x will be: 

 

1 2

1 2

1

2

3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆˆ ˆ

n

n

T T T

f f f f f f f

f f f f f f f f

f f f f f f f f

A w B c R

w w A A A R

c c B B B R







       

       
 

       
 

  (22) 

2) Adaptation laws for the wavelet networks used to 

approximate  g x will be: 

5

0 0

0 0
ˆ

0 0

T

g g u R








 
 
     
 
 
 

 

where  ˆ ˆ ˆT T

g g g g gA w B c      

 

 

5 1

6 1

ˆ

ˆ

g g n

g g n

w w R

c c R

  

  

   

   
             (23)  

where 

1 1 2 2
ˆ ˆ ˆ  ; 1i g gi g gi g pgip

A u A u A u i n         

1 1 2 2
ˆ ˆ ˆ  ; 1i g gi g gi g pgip

B u B u B u i n         

here 1, 2,...., 6    are the learning rates with positive 

constants.   

In next subsection the proposed control law is 

examined. 

D. Stability Analysis 

Choosing the final Lyapunov function as [9] 

1

2

      

T T T T

f f f f g g g gT

e

T T

f f g g

w w c c w w c c
V V R

tr tr

 
   

 

      
   

      
   

       

  (24) 

From (7) and (8), the time derivative of (24) is given 

as  

   

      

   ( )

       

T T T T

f f f f g g g gT

e

T T

f f g g

T T T

d

T T T T T

f f f f g g g g f f

w w c c w w c c
V V R

tr tr

e Pke e P R f x g x u

w w c c w w c c
tr

 

  

   

 

    

      
   

      
   

       

      

 
   

    

T

g g
tr



   
   

      

(25) 

Substitution of control law (10) in (25) results in 

    1ˆ ˆ ˆ( ( ) ( )

      )

T T T T T

b r

T T T T T T

f f f f g g g g f f g g

d

V e Pke e P R f x g x g I gg u u

w w c c w w c c
tr tr

  





     

       

      
        

           

 

Which can be further simplified as:  

    1ˆ ˆ ˆ ˆ( ( ) ( )

)

T T T T T

b r

T T T T T

f f f f g g g g f f

g d

T

g g

V e Pke e P R f x g x g I gg u u

w w c c w w c c
gu u tr

tr

  

 



    



      

  
         

      

  
 

  

 

  1ˆ ˆ( ( ) ( ) ( )

)

T T T T

b r b r

T T T T T

f f f f g g g g f f

g d

T

g g

V e Pke e P R f x u u I gg u u

w w c c w w c c
gu u tr

tr

   

 



    



        

  
         

      

  
 

  

 

Substitution of backstepping control term (11) in 

above equation results in 

1ˆ ˆ( ( ) ( )

)

T T T

r b r

T T T T T T

f f f f g g g g f f g g

V e Pke R f Q u I gg u u

w w c c w w c c
gu tr tr

    

     

       

      
         

           

(26) 

Expanding f  and g  using (18) and substituting 

adaptation laws (22) and (23) in (26) results in  

1ˆ ˆ( ( ) ( ) )T T T

f r b r gV e Pke R Q u I gg u u u             

(27) 

Substituting the robust control term (12) in above 

equation  

 1
( )

2

T T TV e Pke RQ R


   





 
    


   (28) 

where 
1ˆ ˆ( ) ( )T

f b r gI gg u u u          

Equation (28) can be further simplified as 

T T T TV e Pke RQ R R     


    


     (29) 

Assuming that    is bounded on a compact set so that 

the bound max   holds for all x .  

Stability is assured as long as 

T T T TR e Pke RQ R     


  


         (30) 

Therefore V  is negative outside a compact set which 

implies the convergence of all the tracking error signals 

to small neighborhood of origin and thus assures the 

uniform boundedness of all the closed loop signals of the 

system under consideration [9]. 

 

287©2015 Engineering and Technology Publishing

Journal of Automation and Control Engineering Vol. 3, No. 4, August 2015



IV. SAIMULATION RESULTS 

To demonstrate the applicability of the proposed 

scheme, it is applied to a MIMO underactuated system 

with following system dynamics  

1 2

2 3 1 1 22 2

2 1

3 4

4 1 4 2 1 22 2 2

4 1 2

5 6

4 1 5 2 4 1 22 2

1 3

0.2 0.1
0.1 sin

1 cos 1 cos

0.2 0.2
0.5 cos

1 1

0.5 0.1
0.2 cos

1.5 sin 1.5 sin

x x

x x x u u
x x

x x

x x x x u u
x x x

x x

x x x x x u u
x x



  
 



  
 



  
 

(31) 

1 1

2 2

y x

y x




 

System belongs to the class of the system described by 

(1) with 3n   and 2p   with following nonlinearities 

3 1

1 4 2

1 5 2 4

2 2

2 1

2 2 2

4 1 2

2 2

1 3

0.1 sin

0.5 cos

0.2 cos

0.2 0.1

1 cos 1 cos

0.2 0.2

1 1

0.5 0.1

1.5 sin 1.5 sin

x x

f x x x

x x x x

x x

g
x x x

x x

 
 


 
  

 
 

  
 

  
  

 
 

   

            (32) 

In this simulation, these nonlinearities are treated as 

system uncertainties. 

Proposed controller (10) with backstepping (11) and 

robust control term (12) is applied to this system with an 

objective to force the system states 
1x , 

3x and 
5x  to track 

the desired trajectories 1 0.5sin 0.1cos.5 .3dx t t   , 

2 0.5sin.5 0.1cos .1dx t t    and 

3 0.5sin.5 0.5cos.5 .3dx t t    respectively. 

For identification of uncertain system dynamics 

wavelet networks are synthesized using Mexican hat 

wavelet as mother wavelet function. Parameters for these 

wavelet networks are estimated online using the 

proposed adaptation laws. 

Initial conditions are taken as    0 0.1,0,0.1,0.0.5,0
T

x   

while initial conditions for wavelet parameters are set to 

zero. Attenuation level for robust controller is taken as 

0.01.Controller parameters chosen to perform this 

simulation are 

8 0 0 10 0 0

0 6 0 , 0 6 0

0 0 5 0 0 3

10 0 0 1 0 0

0 5 0 , 0 1 0

0 0 3 0 0 1

k P

Q R

   
   

 
   
      

   
   

 
   
      

 

Fig. 1 and Fig. 2 show the performance to the system 

(31) under the action of proposed control scheme, while 

Fig. 3 shows the applied control effort. Effectiveness of 

proposed scheme is reflected by the rapid convergence of 

desired trajectories by system states in presence of 

almost smooth control efforts. 
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Figure 1.  Desired and system trajectories 
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Figure 2.  Tracking error.  
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Figure 3.  Control inputs 
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V. CONCLUSION 

In this work, an adaptive backstepping control law has 

been proposed to solve the tracking control of a class of 

MIMO underactuated systems with unknown system 

dynamics. Proposed controller guarantees the ultimate 

upper boundedness of all the closed loop signals. 

Adaptive wavelet networks are used for approximating 

the unknown system dynamics of the system. A robust 

control component is incorporated to mitigate the 

uncertainties due to wavelet networks and perturbations 

due pseudo inverse term used in control term.  A 

simulation is carried out to validate the effectiveness of 

adaptive control law.  
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