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Abstract—This paper focuses on the problem of multistep 

ahead prediction of electric power systems using the 

Gaussian process models. The Gaussian process model is a 

nonparametric model and the output of the model has 

Gaussian distribution with mean and variance. The 

multistep ahead prediction for the phase angle in transient 

state of the electric power system is accomplished by using 

multiple Gaussian process models as every step ahead 

predictors in accordance with the direct approach. The 

proposed prediction method gives the predictive values of 

the phase angle and the uncertainty of the predictive values 

as well. Simulation results for a simplified electric power 

system are shown to illustrate the effectiveness of the 

proposed prediction method. 

 

Index Terms—multistep ahead prediction, Gaussian process 

model, direct method, electric power system 

 

I. INTRODUCTION 

In recent years, model predictive control (MPC) has 

received much attention in both process control and servo 

control [1]-[5]. The performance of MPC greatly depends 

on the accuracy of the model used for prediction. 

Therefore, to improve the performance of MPC, it is 

urgent to develop an accurate predictor. The Gaussian 

process (GP) model is one of the attractive models for 

multistep ahead prediction. The GP model is a 

nonparametric model and fits naturally into Bayesian 

framework [6]-[8]. This model has recently attracted 

much attention for system identification [9], [10], time 

series forecasting [11]-[13], and predictive control [3], 

[14], [15]. Since the GP model gives us not only the mean 

value but also the variance of the conditionally expected 

value of the output, it is useful for MPC considering the 

uncertainty of model. Moreover, the GP model has far 

fewer parameters to describe the nonlinearity than the 

parametric models such as radial basis function (RBF) 

model, neural network model, and fuzzy model.  

There are two approaches to multistep ahead prediction. 

One is the direct method that makes multistep ahead 

prediction directly by using a specific step ahead 

predictor. The other is the iterated method that repeats 

one-step ahead prediction up to the desired step. The 
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iterated multistep ahead predictions with propagation of 

the prediction uncertainty based on the GP model were 

presented in [11], [12]. Although the computational 

burden of this approach is not so heavy during the 

training phase, unacceptable prediction errors are 

gradually accumulated as the prediction horizon increases 

especially in the presence of measurement noise. 

Therefore, with the aim of MPC, this paper proposes 

the direct method for multistep ahead prediction of the 

electric power systems in the GP framework. Multistep 

ahead prediction for the phase angle in transient state of 

the electric power system is directly performed by using 

the multiple trained GP models as every step ahead 

predictor. The proposed direct method uses not only one-

step ahead predictor but also all-step ahead predictors. 

Therefore, although each step ahead predictor has a 

systematic error, the prediction errors are not 

accumulated so much as the prediction horizon increases. 

The proposed direct method gives the predictive values of 

the phase angle and uncertainty of the predictive values 

as well. The uncertainty of the predictive values is 

usually not obtained by the non GP-based direct methods 

such as the RBF-based direct method. 

This paper is organized as follows. In section II, the 

problem of multistep ahead prediction is formulated for 

an electric power system. In section III, the multiple GP 

prior models are derived for every step ahead predictors 

and the training method of the GP prior models is briefly 

described. In section IV, the direct multistep ahead 

prediction is carried out using the GP posterior 

distribution. In section V, simulation results are shown to 

illustrate the effectiveness of the proposed prediction 

method. Finally, conclusions are given in section VI. 

II. STATEMENT OF THE PROBLEM 

Consider a single machine power system described by  
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where  ( )   phase angle， ( ): phase angle corrupted 

by the measurement noise  ( ),     ( ): increment of 
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excitation voltage,  ̃ : inertia coefficient,  ̃ : damping 

coefficient,   : generator output power,    : turbine 

output power,    : excitation voltage,   : infinite bus 

voltage, and   : system impedance. The measurement 

noise  ( )  is zero mean white Gaussian noise with 

variance     It is assumed that the input  ( )  
    (   )  and the noisy measurement of the output 

 ( )   (   )  at      are available when the 

multistep ahead predictors are trained, where    is the 

sampling period. The problem of multistep ahead 

prediction is usually to estimate the future outputs given 

the past input and output data. The optimal predictor can 

be written as 
 

  ̂(   )   [ (   )  ( )]              (2) 
 

where  [ ] is the expectation operator, and 
 

  ( )  [ ( )  (   )    (      )  

                    ( )  (   )    (      )]
                 

(3) 

 

Which is the state vector consisting of the past outputs 

and inputs up to the prespecified lags    and   . Actually, 

with the GP framework, not only estimates  ̂(   ) but 

also its uncertainty, i.e., the variance  ̂ (   ) are 

estimated. Therefore, the problem of this paper is to 

construct the following probability distributions for the 

multistep ahead prediction  
 

  (   )  ( )  ( ̂(   )  ̂ (   )) 

                                            (         ) 
(4) 

 

And to carry out multistep ahead prediction up to   

step based on these distributions, by using the GP 

framework. 

III. GP PRIOR MODEL 

A. Derivation of GP Prior Models 

Consider a  -step ahead predictor as  
 

  (   )    ( ( ))    ( ) 

                         (         )                
(5) 

 

where   ( ) is a function which is assumed to be 

stationary and smooth.   ( ) is zero mean Gaussian noise 

with unknown variance   
 . In this paper, this predictor is 

constructed in the GP framework. 

Putting                      on (5) yields 
 

                         (6) 

where 
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                                          (        )]
  

   [  (  )   (  )     (  )]
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   and    are the vector of model outputs and the vector 

of function values for the j-step ahead predictor, 

respectively.   is the model input matrix and is common 

for every step ahead predictors. {    }  is the training 

input and output data for the j-step ahead predictor. 

A GP is a Gaussian random function and is completely 

described by its mean function and covariance function. 

We can regard it as a collection of random variables 

which has joint multivariable Gaussian distribution. 

Therefore, the vector of function values    can be 

represented by the GP as  
 

     (  ( )   (   )) (8) 
 

where   ( ) is the N-dimensional mean function vector 

and   (   )  is the N-dimensional covariance matrix 

evaluated at all pairs of the training input data. Equation 

(8) means that    has a Gaussian distribution with the 

mean function vector    ( ) and the covariance matrix 

  (   ). 

The mean function is often represented by a 

polynomial regression [8]. In this paper, the mean 

function vector   ( )  is expressed by the first order 

polynomial, i.e., a linear combination of the model input: 
 

   ( )  [  (  )   (  )     (  )]
 
  ̃                 (9) 

 

where  ̃  [   ] and   [       ]  is the N-

dimensional vector consisting of ones, and    

[            (     )]
 

 is the unknown weighting 

parameter vector of the mean function to be trained. The 

determination of   will be discussed in the next 

subsection. 

The covariance matrix   (   ) is constructed as 
 

 

  (   )  [

  (   )    (   )
   

  (   )    (   )

]        (10) 

 

where the element   (   )     (  (  )   (  ))  

  (     ) is a function of    and     Under the 

assumption that the process is stationary and smooth, the 

following Gaussian kernel is utilized for   (   ) : 
 

            (   )    (     )          
 

                        
    ( 

‖     ‖
 

   
 ) 

(11) 

where   
   is the signal variance,    is the length scale, 

and     denotes the Euclidean norm. The free parameters 

   and    of (11) and the noise standard deviation    are 

called hyperparameters and construct the hyperparameter 

vector    [        ]
 
     can control the overall 

variance of the random function   ( ) and determines the 

magnitude of the function   ( )      can change the 

characteristic length scale so that the axis about the model 

input changes. If    is set to be smaller, the function 

  ( ) becomes more oscillatory. Therefore, the 

hyperparameter vector    should be appropriately 

determined according to the training data for precise 
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prediction. This parameter selection will be also 

presented in the next subsection. 

Since    is noisy observation, we have the following 

GP model for j-step ahead prediction from (6) and (8) as 
 

     (  ( )   (   )) (12) 
 

where 
 

   (   )    (   )    
    

                                                                
(13) 

 

In the following,   (   ) and   (   ) are written as 

   and   , respectively. 

B. Training of GP Prior Models 

To perform multistep ahead prediction, the proposed 

direct approach needs 1 to  step ahead prediction 

models as shown in Fig. 1. The accuracy of prediction 

greatly depends on the unknown parameter vector 

   [  
    

 ]
 
and therefore    has to be optimized. This 

training is carried out by minimizing the negative log 

marginal likelihood of the training data: 
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(14) 

Since the cost function  (  ) generally has multiple 

local minima, this training problem becomes a nonlinear 

optimization one. However, we can separate the linear 

optimization part and the nonlinear optimization part for 

this optimization problem. The partial derivative of (14) 

with respect to the weighting parameter vector    of the 

mean function is as follows: 
 

   (  )

   
   ̃   

      ̃
   

   ̃   (15) 

 

Note that if the hyperparameter vector    of the 

covariance function is given, then the weighting 

parameter    can be estimated by the linear least-squares 

method putting   (  )      ⁄ : 
 

    ( ̃
   

   ̃)
  
 ̃   

                    (16) 
 

However, even if the weighting parameter vector    is 

known, the optimization with respect to hyperparameter 

vector    is a complicated nonlinear problem and might 

suffer from the local minima problem. Therefore, the 

unknown parameter vector    is determined by the 

separable least-squares (LS) approach combining the 

linear LS method and the genetic algorithm (GA) [16], as  

  [    ]  [  [    ]
    [    ]

 ]
 

 [  [    ]
    [    ]   [    ]   [    ]]

 
 

 

Figure 1.  The proposed multistep ahead prediction scheme. 

IV. MULTISTEP AHEAD PREDICTION BY GP POSTERIOR 

In section III, we have already obtained the GP prior 

models for    (         )  step ahead predictors. In 

the proposed direct approach, multistep ahead prediction 

up to   step is carried out directly using every GP prior 

models as shown in Fig. 1.  

For a new given test input 

     (  )  [  (  )   (    )     (      

 )   (  )   (    )     (       )]
 

  

And corresponding test output   (    )  (  
       ) , we have the following the joint Gaussian 

distribution: 

 [
  

  (    )
] 

  ([
  ( )

  (  )
]  [

    (    )

  (    )   (     )    [    ]
 ]) 

(         ) 

(17) 

 

where    is the starting step for prediction, and 

  (    )    
 (    ) is the N-dimensional covariance 

vector evaluated at all pairs of the training and test data. 

  (     ) is the variance of the test data.   (    ) and 

  (     )  are calculated by the trained covariance 

function. 

From the formula for conditioning a joint Gaussian 

distribution [17], the posterior distribution for a specific 

test data is 

   (    )          ( ̂ (    )  ̂ 
 (    )) 

(         )                
(18) 

where
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 ̂ 
 (    )    (     ) 

                          (    )  
    (    )    [    ]

  
 

Which are the predictive mean and the predictive 

variance at the j-step ahead, respectively. It is noted that 

the nonlinearity of the predictive mean can be expressed 

by the trained hyperparameters even if the prior mean 

function is set to be a linear combination of the model 

input as (9). 

V. NUMERICAL SIMULATIONS 

Consider a simplified electric power system [18] 

described by 
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  ̃ ̈( )   ̃ ̇( )         

   
     

  
(      ( ))     ( )

 ( )   ( )   ( )

 (20) 

 

where  ̃         ̃                          

        and          These are all per unit values. 

The training data are sampled with sampling period 

       as  ( )      (   )  and  ( )   (   )  at 

      The measurement noise  ( )  is zero mean 

Gaussian noise with standard deviation          

(noise to signal ratio (NSR): 1%),          (NSR: 

3%), or          (NSR: 5%). The lags for the state 

vector (3) are chosen as       and      in the case 

of                and      in the case of 

          and       and      in the case of 

          respectively. The number of the training 

input and output data is taken to be       for training 

each    (         ) step ahead predictor. 

To validate the results of training, the prediction results 

for 1, 10 and 20 step ahead predictors in the case of 

          are shown in Figs. 2-4. In these figures, the 

circles with lines show the predictive mean  ̂ (   ), the 

crosses show the measurements (test output)   (   ), 

and the shaded areas give the double standard deviation 

confidence interval (95.5% confidence region). From 

these figures, we can confirm that the error between the 

test data and the predictive mean is quite small for every 

step ahead predictors and it does not become so large as 

the prediction horizon increases.  

After training, the multistep ahead prediction up to 

     step is carried out, where the starting step is set 

to be       as an example. Figs. 5-7 show the results 

of the multistep ahead prediction by the proposed method. 

In these figures, the dotted lines show the true output 

  ( ). The predictive means  ̂ ( ) are quite close to the 

true output   ( )  for all noise levels. Moreover, the 

probability that the true measurements   ( ) are included 

in the double standard deviation confidence interval is 

totally 96.7%, which is very close to the expected value 

95.5%. This indicates that the proposed prediction 

method gives the reasonable uncertainty (predictive 

variance). Therefore, we can say that the proposed 

multistep ahead prediction can be carried out successfully 

even in the presence of measurement noise. 

 

Figure 2.  Prediction result for 1 step ahead predictor (        ). 

 

Figure 3.  Prediction result for 10 step ahead predictor (        ). 

 

Figure 4.  Prediction result for 20 step ahead predictor (        ).  

 

Figure 5.  The result of multistep ahead prediction (        ). 
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Figure 6.  The result of multistep ahead prediction (        ). 

 

Figure 7.  The result of multistep ahead prediction (        ). 

VI. CONCLUSIONS 

In this paper, we have proposed the multistep ahead 

prediction of electric power systems by using multiple 

Gaussian process models. The multistep ahead prediction 

has been carried out directly by using multiple Gaussian 

process models as every step ahead predictors. Through 

the numerical simulations for the simplified electric 

power system, it has been experimentally demonstrated 

that the proposed direct method is very accurate even in 

the presence of measurement noise. Therefore, the 

proposed prediction method has high potential for MPC. 

Developing MPC algorithm based on this prediction 

model is one of the future works. 
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