
A Visual Servoing System for Interactive 

Human-Robot Object Transfer 
 

Ying Wang, Daniel Ewert, Rene Vossen, and Sabina Jeschke 
Institute Cluster IMA/ZLW & IfU, RWTH Aachen University, Aachen, Germany 

Email: {ying.wang, daniel.ewert, rene.vossen, sabina.jeschke}@ima-zlw-ifu.rwth-aachen.de 

 

 

 
Abstract—As the demand for close cooperation between 

human and robots grows, robot manufacturers develop new 

lightweight robots, which allow for direct human-robot 

interaction without endangering the human worker. 

However, enabling direct and intuitive interaction between 

robots and human workers is still challenging in many 

aspects, due to the nondeterministic nature of human 

behavior. This work focuses on the main problems of 

interactive object transfer between a human worker and an 

industrial robot: the recognition of the object with partial 

occlusion by barriers including the hand to the human 

worker, the evaluation of object grasping affordance, and 

coping with inaccessible grasping points. The proposed 

visual servoing system integrates different vision modules 

where each module encapsulates a number of visual 

algorithms responsible for visual servoing control in human-

robot collaboration. The goal is to extract high-level 

information of a visual event from a dynamic scene for 

recognition and manipulation. The system consists of 

several modules as sensor fusion, calibration, visualization, 

pose estimation, object tracking, classification, grasping 

planning and feedback processing. The general architecture 

and main approaches are presented as well as the future 

developments planned. 

 

Index Terms—visual servoing, human-robot interaction, 

object grasping, visual occlusion 

 

I. INTRODUCTION 

Robots are a crucial part of nowadays industrial 

production with applications including e.g. sorting, 

manufacturing as well as quality control. The afflicted 

processes gain efficiency owing to the working speed and 

durability of robotic systems, whereas product quality is 

increased by the exactness and repeatability of robotic 

actions. However, current industrial robots lack the 

capability to quickly adapt to new tasks or improvise 

when facing unforeseen situations, but must be 

programmed and equipped for each new task with 

considerable expenditure. Human workers, on the other 

hand, quickly adapt to new tasks and can deal with 

uncertainties due to their advanced situational awareness 

and dexterity.  

Current production faces a trend towards shorter 

product life cycles and a rising demand for individualized 

and variant-rich products. To be able to produce small 

                                                           
Manuscript received July 1, 2014; revised September 15, 2014. 

batches efficiently, it is desirable to combine the 

advantages of human adaptability with robotic exactness 

and efficiency. Such close cooperation has not yet been 

possible because of the high risk of endangerment caused 

by conventional industrial robots. In consequence, robot 

and human work areas had strictly been separated and 

fenced off. To enable a closer cooperation, robot 

manufacturers now develop lightweight robots for safe 

interaction. The light-weight design permits mobility at 

low power consumption, introduces additional 

mechanical compliance to the joints and applies sensor 

redundancy, in order to ensure the safety of humans in 

case of robot failure. These robots allow for seamless 

integration of the work areas of human workers and 

robots and therefore enable new ways of human-robot 

cooperation and interaction. Here, the vision is to have 

human and robot workers work side by side and 

collaborate as intuitively as human workers would among 

themselves [1]-[4].  

Among all forms of human-robot cooperation, 

interactive object transfer is one of the most common and 

fundamental tasks and it is also a very complex and thus 

difficult one. One major problem for robotic vision 

systems is visual occlusion, as it dramatically lowers the 

chance to recognize the target out of a group of objects 

and then perform successive manipulations on the target. 

Even without any occlusion, objects in a special position 

and orientation or close to a human, make it difficult for 

the robot to find accessible grasping points. Besides, in 

the case of multiple available grasping points, the robot is 

confronted with the challenge of deciding on a feasible 

grasping strategy. When passing the object to the human 

coworker, the robot has to deal with the tough case of 

offering good grasping options for the human partner.  

A visual servoing system is proposed to address the 

above-mentioned concerns in human-robot cooperation. 

Our work considers an interaction task where the robot 

and human hand over objects between themselves. 

Situational awareness will be greatly increased by the 

vision system, which allows for the prediction of the 

work area occupation and the subsequent limitation of 

robotic movements in order to protect the human body 

and the robotic structure from collisions. Meanwhile, the 

visual servoing control enhances the abilities of robotic 

systems to deal with the unknown changing surroundings 

and unpredictable human activities.  
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Recognition of partially occluded objects will be 
solved by keeping records of the object trajectory. 
Whenever the object recognition fails, the last trajectory 
information of the object will be retrieved for estimating 
the new location. Reconstruction of the object from its 
model eliminates the effect of the presence of partial 
occlusion, and thus enables the successive grasping 
planning. To equip the robot partner with human-like 
perception for object grasping and transferring, a 
planning module will be integrated into the visual 
servoing system to perform grasping planning, including 
the location and evaluation of possible grasping points. 
Thus, the robot, due to its awareness of the object to hand 
over, will be able to detect, recognize and track the 
occluded object. Fig. 1(a) considers the occlusion by the 
human hand, which is one unavoidable barrier among all 
the possible visual occlusions we are dealing with.  

Addressing inaccessible grasping points for the robot, 
the visual servoing system analyses and evaluates the 
current situation. The robot adjusts its grippers to a 
different pose for a new round of grasping affordance 
planning, as shown in Fig. 1(b, c, d). In some case, this 
method might fail due to mechanical limitations of the 
robot. As an alternative, the human coworker will be 
requested to assist the robot with the unreachable 
grasping points by presenting the object in other way.  

  

a) workpiece occluded by the hand        b) possible collisions 

  

c) adjusting to the grasping point         d) successful grasping 

Figure 1.  Interactive object human-robot transfer. 

The remainder of the paper is organized as follows: 
section II presents a brief review of the recent literature 
regarding development of the visual servoing control and 
state-of-the-art approaches to human-robot interactive 
object handling. The system architecture and workflow of 
our proposed visual servoing system are discussed in 
section III. The key tools and methods for developing the 
proposed vision system are presented in section IV. Since 
the visual servoing system has not yet been completely 
implemented, section V summarizes the research results 
of this paper and plans on future work. 

II. RELATED WORK 

A. Visual Servoing  

In robotics, the use of visual feedback for motion 

coordination of a robotic arm is termed visual servoing 

[5]. A few decades ago, technological limitations (the 

absence of powerful processors and the 

underdevelopment of digital electronics) failed some 

early works in meeting the strict definition of visual 

servoing. Traditionally, visual sensing and manipulation 

are combined in an open-loop fashion: first acquire 

information of the target, and then act accordingly. The 

accuracy of operation depends directly on the accuracy of 

the visual sensor, the manipulator and its controller. The 

introduction of a visual-feedback control loop serves as 

an alternative to increasing the accuracy of these 

subsystems. It improves the overall accuracy of the 

system: a principle concern in any application [6]. 

There have been several reports on the use of visual 

servoing for grasping moving targets. The earliest work 

has been reported by SRI in 1978 [7]. A visual servoing 

robot is enabled to pick items from a fast moving 

conveyor belt by the tracking controller conceived by 

Zhang et al. [8]. The hand-held camera worked at a visual 

update interval of 140ms. Allen et al. [9] used a 60Hz 

static stereo vision system, to track a target which was 

moving at 250mm/s. Extending this scenario to grasping 

a toy train moving on a circular track, Houshangi et al. 

[10] used a fixed overhead camera, and a visual sample 

interval of 196ms, to enable a Puma 600 robot to grasp a 

moving target.  

Papanikolopoulos et al. [11] and Tendick et al. [12] 

carried out research in the application of visual servoing 

in tele-robotic environment. The employment of visual 

servoing makes it possible for human to specify the task 

in terms of visual features, which are selected as a 

reference for the task. Approaches based on neural 

networks and general learning algorithms have been used 

to achieve robot hand-eye coordination [13]. A fixed 

camera observes objects as well as the robot within the 

workspace, and learns the relationships between robot 

joint angles and 3D positions of the end-effector. At the 

price of training efforts, such systems eliminate the need 

for complex analytic calculations of the relationships 

between image features and joint angles. 

B. Human-Robot Interactive Object Handling 

Transferring the control of an object between a robot 

and a human is considered a highly complicated task. 

Possible applications include but are not limited to 

preparing food, picking up items, and placing items on a 

shelf [14]-[17]. Related surveys present some research 

achievements concerning robotic pick-up tasks in the 

recent years. Jain and Kemp [18] demonstrate their 

studies in enabling an assistive robot to pick up objects 

from flat surfaces. In their setup a laser range camera is 

employed to reconstruct the environment out of the point 

clouds. Various segmentation processes are then 

performed to extract flat surfaces and retrieve point sets 

corresponding to objects. The robot uses a simple 

heuristic to grasp the object. The authors present a 

complete performance evaluation towards their system, 

revealing its efficiency in real conditions.  

Other approaches follow image-based methods for 

grasping novel objects, considering grasping on a small 

region. Saxena et al. [19] create the prediction model for 

278©2015 Engineering and Technology Publishing

Journal of Automation and Control Engineering Vol. 3, No. 4, August 2015



novel object grasping from supervised learning. The idea 

is to estimate the 2D location of the grasp based on 

detected visual features on an image of the target object. 

From a set of images of the object, the 2D locations can 

then be triangulated to obtain a 3D grasping point. 

Obviously, given a complex pick-and-place or fetch-and-

carry type of task, issues related to the whole detect-

approach-grasp loop [6] have to be considered. Most 

visual servoing systems, however, only deal with the 

approach step and disregard issues such as detecting the 

object of interest in the scene or retrieving its 3D 

structure in order to perform grasping.  

In many robotic applications, manipulation tasks 

involve forms of cooperative object handling. 

Papanikolopoulos and Khosla [11] studied the task of a 

human handing an object to a robot. The experimental 

results show how human subjects, with no particular 

instructions, instinctively control the objects position and 

orientation to match the configuration of the robots hand 

while it is approaching the object. The human 

spontaneously tries to simplify the task of the robot. 

Recent research developments with the NASA Robonaut 

[20], the AIST HRP-2 [21], and the HERMES [22] robot 

also address handing over objects between a humanoid 

robot and a person. Nevertheless, none of these projects 

have carried out in-depth discussion on object transfer. 

Our proposed system focuses on planning and 

implementing interactive human-robot object transfer, 

addressing the main challenges: visual occlusion and 

grasping affordance evaluation. 

III. SYSTEM ARCHITECTURE  

A. Overview 

The visual servoing system constitutes the following 

modules: sensor fusion, calibration, visualization, pose 

estimation, object tracking, object classification, grasping 

planning and feedback processing, as shown in Fig. 2. 

The most primary inputs for the system are sensory data 

of the targets and the visual feedback. Feature sets and 

2D/3D models of the targets are provided beforehand in 

the forms of 2D images or point clouds and serve as a 

knowledge base for tracking and classifying of the targets, 

as well as for the visualization. Physical constraints for 

the sensing configuration are crucial elements for the 

system to handle the acquired image data, such as data 

registration, alignment and object pose estimation. 

 

Figure 2.  The visual servoing system.  

The system will make excessive use of 2D/3D vision 
processing libraries, such as PCL (point cloud library) 
[23], OpenCV (open source computer vision library) [24], 
ViSP (visual servoing platform) [25] within the above-
mentioned visual functional modules, including the pre- 
and post-processing of the image data. For human-robot 
interactive object grasping the library GraspIt! [26], a 
tool for grasping planning, will be integrated in this 
system to evaluate each grasp with numeric quality 
measures. Additionally it also provides simulation 
methods to allow the user to evaluate the grasp and create 
arbitrary 3D projections of the 6D grasp wrench space. 

To implement the proposed visual servoing system, in 
our laboratory an experimental platform has been 
established as shown in Fig. 3. It comprises two ABB 
IRB120 robots, two Kinect sensors and Lego sets. With 
the static configuration of Kinect sensors in the platform, 
the following functions are already realized: multiple 
sensor calibration and fusion, visualization, object 
tracking, pose estimation and camera self-localization. 

 

Figure 3.  The experimental platform 

B. Module Description and Workflow 

The main workflow our proposed visual servoing 

system is depicted in Fig. 4. The workflow comprises 

four major processes which are noted as follows. 

 

Figure 4.  The workflow of the visual servoing system. 

 The Calibration module estimates intrinsic and 

extrinsic camera parameters from several views of 

a reference pattern, and computes the rectification 
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transformation that makes the camera optical axes 

parallel. In many cases, a single view may not pick 

up sufficient features to recognize an object 

unambiguously. In various applications this 

process is extended to a complete sequence of 

images, usually received from multi-sensors at 

several viewpoints. If more than one camera in the 

system, the module calculates the relative position 

and orientation between each two cameras. This 

information is then used by the Sensor Fusion 

module to align the visual data from each camera 

to the same plane and fuse them to form an 

extended view. The Visualization module displays 

the calibrated image at the selected viewpoint or 

the image resulting from the fusion. 
 Object Classification takes in a set of features to 

locate objects in videos/images over time in 
reference of the extracted features (shapes and 
appearances) of the target object. This approach 
implements the object identification with this 
reduced representation. It identifies the target for 
the Object Tracking module to locate objects in 
videos/images. Pose Estimation calculates the 
position and orientation of the object in the real 
world by aligning it to its last pose in the working 
scene. Additionally the location of the human is 
roughly estimated by combining the results of 
human skeleton tracking and face detection. 

 With the known location of both the object and 
human, the Grasping planning module analyzes 
the current approaching and grasping conditions, 
based on the present robotic arm and gripper 
models. The grasping strategies correspond to 
possible spatial relationships between the target 
and the robot, as shown in Fig. 5. The occlusion of 
the object to be grasped is the most likely cause 
for failures in recognition as well as grasping. Our 
solution here is to estimate the current object 
location from its last known pose and extrapolate 
the current pose making use of the object model. 
With the estimated pose of the object, the 
Grasping planning module calculates the possible 
grasping points and then executes grasping on the 
object. If none of the grasping points exist in the 
current situation, the robot will request the human 
coworker to assist its grasping by adjusting the 
way he/she presenting the object.  

 

Figure 5.  Grasping planning with occlusion. 

 At last, the above obtained and processed data are 

conveyed to the robot controller as Recognition & 

Manipulation inputs to support the operations 

from the robot on the 3D World. The visual 

servoing system assists in making and adjusting 

the path planning and grasping strategies of robots 

in real time from Visual Feedback.  

IV. TOOLS AND METHODS 

As mentioned above, the proposed visual servoing 

system is developed on the basis of several software 

frameworks (ROS, GrapsIt!) and image processing 

libraries (OpenCV, PCL).  

A. Tools 

1) ROS 

ROS (Robot Operating System) [27] is a software 

framework for robot software development. It provides 

standard operating system services such as hardware 

abstraction, low-level device control implementation of 

commonly-used functionality, message-passing between 

processes, and package management. ROS is composed 

of two main parts: the operating system ros as described 

above and ros-pkg, a suite of user contributed packages 

that implement functionality such as simultaneous 

localization and mapping, planning, perception, 

simulation etc.  

The openni_camera implements a fully-featured ROS 

camera driver on top of OpenNI. It produces point clouds, 

RGB image messages and associated camera information 

for calibration, object recognition and alignment. Another 

package that plays a significant role for our purpose is tf, 

which keeps track of multiple coordinate frames over 

time. tf maintains the relationship between coordinate 

frames in a tree structure buffered in time, and enables 

the transform of points, vectors, etc. between any two 

coordinate frames at any desired point in time. 

2) GraspIt! 

GraspIt! is a simulator that can accommodate arbitrary 

hand and robot designs. Grasp planning is one of the most 

widely used tools in GraspIt!. The core of this process is 

the ability of the system to evaluate many hand postures 

quickly, and from a functional point of view (i.e. through 

grasp quality measures).  

Automatic grasp planning is a difficult problem 

because of the huge number of possible hand 

configurations. Humans simplify the problem by 

choosing an appropriate prehensile posture appropriate 

for the object and task to be performed. By modeling an 

object as a group of shape primitives (spheres, cylinders, 

cones and boxes) GraspIt! applies user-defined rules to 

generate a set of grasp starting positions and pregrasp 

shapes that can then be tested on the object model.  

3) OpenCV 

OpenCV is an open source computer vision and 

machine learning software library. OpenCV is built to 

provide a common infrastructure for computer vision 

applications and to accelerate the use of machine 

perception in the commercial products. The library has a 
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comprehensive set of both classic and state-of-the-art 

computer vision and machine learning algorithms. 

4) PCL 

PCL is a large scale, open source project for 2D/3D 

image and point cloud processing. The PCL framework 

contains numerous state-of-the art algorithms including 

filtering, feature estimation, surface reconstruction, 

registration, model fitting and segmentation. These 

algorithms can be used, for example, to filter outliers 

from noisy data, stitch 3D point clouds together, segment 

relevant parts of a scene, extract keypoints and compute 

descriptors to recognize objects in the world based on 

their geometric appearance, and create surfaces from 

point clouds and visualize. 

B. Methods 

1) Visual servoing 

There have been two ways of using visual information 

prevailing in robotic control area [28]. One is the open-

loop robot control, which extracts image information and 

treats control of a robot as two separate tasks where 

image processing is performed followed by the 

generation of a control sequence. One way to increase the 

accuracy of this approach is to introduce a visual 

feedback loop in the robotic control system, namely 

visual servoing control. In our human-robot cooperation 

scenario, the visual servoing system, functioning as 

shown in Fig. 6, involves acquisition of human pose in 

addition to object tracking in the traditional systems, in 

order to carry out the object transfer.  

 

Figure 6.  The visual servoing control. 

The general ideas behind visual servoing is to derive 

the relationship between the robot and the sensor spaces 

from the visual feedback information and to minimize the 

specified velocity error associated with the robot frame, 

as shown in Fig. 7. Nearly all of the reported vision 

systems adopt the dynamic look-and-move approach. It 

performs the control of the robot in two stages: the vision 

system provides input to the robot controller; then 

internal stability of the robot is achieved by conducting 

motion control commands generated based on joint 

feedbacks by the controller. Unlike the look-and-move 

approach, the visual servoing control directly computes 

the input to the robot joints and thus eliminates the robot 

controller. 

 

Figure 7.  The main processes in vision-based robotic control. 

The visual servoing task in our work includes a form 

of positioning: aligning the gripper with the target object, 

that is, remaining a constant relationship between the 

robot gripper and the moving target. In this case, image 

information is used to measure the error between the 

current location of the robot and its reference or desired 

location [28]. Traditionally, image information used to 

perform a typical visual servoing task is either 2D 

representation with image plane coordinates, or 3D 

expression where camera/object model is employed to 

retrieve pose information with respect to the 

camera/world/robot coordinate system. So, the robot is 

controlled either using image information as 2D or 3D. 

This allows further classifying visual servo systems into 

position-based and image-based visual servoing systems 

(PBVS and IBVS, respectively). 

In this work, the PBVS approach is applied in the 

visual servoing system [6, 28]. Features are extracted 

from the image, and used in conjunction with a geometric 

model of the target object to determine its pose with 

respect to the camera. Apparently, PBVS involves no 

joint feedback information at all, as shown in Fig. 8. 

 

Figure 8.  The position-based visual servoing control. 

Visual servoing approaches are designed to robustly 

achieve high precision in object tracking and handling. 

Therefore, it has great potential in equipping robots with 

improved autonomy and flexibility in the dynamic 

working environment, even with humans’ participation. 

One challenge in this application is to provide solutions 

which are able to overcome position uncertainties. 

Addressing this tough problem, the system offers 

dynamic pose information of the target to be handled by 

the robotic system via the Object Tracking and Pose 

Estimation modules. 

2) Grasping planning 

Grasp planning of a complex object has been thought 

too computationally expensive to be performed in real-
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time. Therefore, the pre-computation, as a preferable 

substitute to real-time computation, has been always 

involved in practical applications. Our proposed system 

adopts the grasping planning approach presented by 

Sidobre et al. [29]. The idea is to compute the grasp 

affordance off-line (in our case, by GraspIt!), for the 

target object to collect the best variety of possible grasps. 

This affordance collection will then be used to select the 

best grasps from, according to a scoring function which 

indicates good grasp quality with a high score. 

Several aspects need to be taken into account to 

compute a grasp quality score out of our scoring function. 

Researchers have identified a multitude of properties that 

an articulated force-closure grasp must possess so that the 

robot can perform everyday tasks similar to the way that 

humans perform. The interrelationship between those 

properties can be delineated into four mutually 

independent properties [30], [31]: dexterity (the 

configuration of the robotic grippers), equilibrium (the 

squeeze imposed on the grasped object), stability 

(resistance to the external disturbances) and dynamic 

behavior (the reaction of the grasp to the changing 

contact status). In our work, a tradeoff is chosen with a 

score that is a weighted sum of these four measures. 

The on-line grasp planning phase takes on when the 

grasp affordance of the specified object is computed. It 

begins with the selection of a grasp from the collection. If 

there were no additional constraints, the highest quality 

score can be safely counted as an indicator to the optimal 

grasp choice. However, the robot must consider the 

limited reachability of its arm and the safety of the human 

handing over the object. An inverse kinematics 

computation is required in order to ensure the availability 

of the grasp. To facilitate the convergence of the robot’s 

and human’s motions, the human interprets the robot’s 

motion and assists it with its limited reachability.  

V. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this paper, we introduce a prototype of a visual 

servoing system for interactive human-robot object 

transfer. The system integrates basic vision modules to 

identify and position the target object. It considers the 

human coworker’s participation and plans for the 

collaborative task for the robot. Our proposed visual 

servoing system is characterized by its solutions to partial 

visual occlusion and inaccessible grasping points in 

robotic object handling.  

Visual occlusion, the major challenge in vision 

monitoring, is addressed by employing the information 

from object tracking to generate a history of the trajectory 

of the target object. In this way, the effect of partial 

occlusion on the object can be eliminated by 

reconstructing the object pose and displacement. An extra 

grasping planning module enables the evaluation of the 

current grasping affordance, based on the poses of both 

the object and the human coworker. If the absence of 

grasping possibilities is attributed to the robot pose, the 

system will make the request for the robot to relocate its 

arm and then re-approach the object. In the case of 

inaccessible grasping points caused by the human, signals 

will be sent out as instructions for the human coworker to 

alter the way he/she presents the object. In the process, 

real-time visual feedback is provided to relevant modules 

as visual information update. 

B. Future Work 

To continue the development of our proposed visual 

system, more efforts will be made on implementing the 

vision processing modules in addition to the completed 

ones. Afterwards, those modules will be integrated into 

the visual servoing system and the functionalities will be 

verified through groups of experiments. Moreover, 

evaluating criteria and approaches will be generated to 

understand the performances and characteristics of the 

system. Following that, experimental studies will be 

conducted towards human-robot interaction with visual 

signals input to the robotic control unit. A thorough 

performance evaluation will be carried out and 

optimizations will be made on the system to achieve the 

three main goals: 

 To propose visual servoing methods to improve 

the autonomy and situational awareness of the 

robot partner to increase task-orientation and 

flexibility in order to work as a team member 

rather than a tool; 

 To enable the robot to realize object recognition 

with partially obstructed objects; 

 To provide visual information for the integrated 

grasping planning tool to evaluate potential grasps. 
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