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Abstract—This paper deals with a frequency-weighted 

model reduction for single-input, single-output systems 

combining the linear least-squares (LS) method with firefly 

algorithm (FA). The reduced-order model is determined by 

minimizing the integral of the magnitude squared of the 

frequency-weighted transfer function error. The 

denominator parameters and time delay of the reduced-

order model are represented by the positions of the fireflies 

and searched for by the FA, while the numerator 

parameters are estimated by the linear LS method for each 

candidate of the denominator parameters and time delay. 

All the best parameters and the time delay of the reduced-

order model are obtained through the search by the fireflies. 

Simulation results show that the accuracy of the proposed 

method is comparable to that of the genetic algorithm (GA)-

based model reduction algorithm, with smaller 

computational burden. 

 

Index Terms—model reduction, frequency-weighting, 

separable least-squares, firefly algorithm 

 

I. INTRODUCTION 

Since many practical systems are of high-order, the 

problem of approximating high-order systems by low-

order models is one of the important problems in system 

theory. The use of a good approximated low-order model 

reduces the computational burden to implement system 

analyses, simulations and control designs. Model 

reduction algorithms have been developed using a 

number of approaches [1]-[12].One of the popular 

approaches is the   optimal modelreduction. In this 

approach, the reduced-order model is generally 

determinedso that a quadratic cost, i.e., the integral of the 

magnitude squared of the transfer function errorbetween 

the original system and the reduced-order model, is 

minimized. The minimization of this cost function is a 

nonlinear problem with respect to the denominator 

parameters and the time delay of the reduced-order model. 

Therefore, we have to solve a very complicated nonlinear 

optimization problem for    optimal model reduction. For 

this problem, one of the authors proposed the hybrid 

model reduction algorithms [10]-[12] combining the 

linear least-squares (LS) method with the genetic 

algorithm (GA) [13], or artificial bee colony (ABC) 

algorithm [14]. However, the GA has many setting 

parameters and requires a complicated coding technique 
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and genetic operations. The ABC algorithm has very few 

setting parameters, but the structure is slightly 

complicatedowing to the search of three types of bee. 

To improve the efficiency of model reduction, in this 

paper, we propose a novel  model reduction algorithm 

for single-input, single-outputcontinuous-time systems 

combining the linear LS method with the firefly 

inspired by an intelligent behavior of firefly swarms [15]. 

In the FA, for any two flashing fireflies, the less brighter 

firefly moves toward the brighter one according to the 

attractiveness. The attractiveness is proportional to the 

light intensity observed by the partner and monotonically 

decreases as the distance between two fire flies increases, 

owing to the inverse square law and the absorption 

property of light. The FA consists of only the basic 

arithmetic operations and does not require complicated 

coding and genetic operations such as crossovers and 

mutations of the GA. Moreover, the performance and 

computational cost of the FA are shown to be better than 

those of other population-based algorithmssuch as the GA 

advantages suggest that the use of the FA increases 

efficiency without deterioration of approximation 

accuracy for model reduction. 

Note that if the denominator parameters and time delay 

of the reduced-order model are fixed a priori, the 

determination of the numerator parameters becomes a 

linear problem, and they are easily obtained by the linear 

LS method. Therefore, we propose a separable LS 

approach combining the linear LS method with the FA to 

determine reduced-order models. The denominator 

parameters and time delay of the reduced-order model are 

represented by the positions of the fireflies and searched 

for by the FA, while the numerator parameters are 

estimated by the linear LS method for each candidate of 

the denominator parameters and time delay. The light 

intensities (fitness values) of the fireflies are evaluated as 

the inverse of the integral of the magnitude squared of the 

frequency-weighted transfer function errors between the 

original system and the candidates of the reduced-order 

model. All the best parameters and the time delay of the 

reduced-order model are obtained through searching by 

the fireflies.  

This paper is organized as follows. In Section II, the 

problem is formulated. In Section III, the numerator 

parameters of the reduced-order model are representedas 

a function of the denominator parameters and time delay. 
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algorithm (FA). The FA is an optimization technique 

and the particle swarm optimization [15], [16]. These 



Then the model reduction algorithm is given by a 

separable LS approach that combines the linear LS 

method with the FA. In Section IV, simulation results are 

shown to illustrate the effectiveness of the proposed 

model reduction method. Finally, some conclusions are 

given in Section V. 

II. STATEMENT OF THE PROBLEM 

Consider an th-order single-input, single-output time 

delay system with the transfer function: 
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where the rational part is stable and strictly proper. 

Let the  th-order reduced model with the time delay be 

given by 
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where    and [ ]denotes Gauss's symbol. The rational 

parts of (2) are also strictly proper.Note that the form of 

the denominator in (2) enables us to express all possible 

patterns of the poles and guaranteesthe stability of the 

reduced-order model when all denominator parameters 
{  } , {  } and  are positive.Many real systems have 

inherently pure time delays, and systems ofmultiple first-

order lags in a cascade also perform as if they are time 

delay systems [7].When such systems are approximated 

by only rational transfer functions, the order of the 

reduced model has to be high for good approximation. If 

an additional time delay is introduced into the reduced-

order model, the approximation might be greatly 

improvedwith fewer parameters of the rational part. 

Our goal is to determine the parameters {  }, {  }, , 
{  } and the time delay  ofthe stable reduced-order 

model so that the integral of the magnitude squared of the 

frequency-weighted transfer function error: 
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is minimized. Here  (  ) is a frequency-weighting 

function, which is introduced to obtain a better 

approximation over a prespecified frequency range such 

as near resonances and operating frequencies. 

III. MODEL REDUCTION ALGORITHM 

A. Representation of Numerator Parameters by LS 

Method 

In this section, we show that the numerator parameters 

of the reduced-order model are represented as a function 

of the denominator parameters and time delay. In the 

following, only the odd case of (2) is considered, because 

the even case of (2) can be treated in the same manner.  

The reduced-order model (2)can be rewritten as  
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 consists of the denominator parameters and time delay, 

and consists of the numerator parameters of the reduced-

order model. Then the cost function (3) is given using (4) 

as follows: 
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where[ ] and [ ] denote the real and imaginary parts of 

the complex number, respectively.Thus, applying the 

linear LS method to (6), the numerator parameter vector 

  is obtained as a function of  :  
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B. Model Reduction by FA 

As the cost function  of (3) or (6) generally has 

multiple local minima, this model reduction becomes a 

nonlinear optimization problem. However, we can 

separate the linear optimization part and the nonlinear 

optimization part for this optimizationproblem. Note that 

if the candidates of the vector  , which consists of the 

denominator parameters and time delay, are given, the 

numerator parameter vector  can be estimated by the 

linear LS method as shown in(7).Therefore, in this paper 

we present the model reduction algorithm by a separable 

LS approach combining the linear LS method with the 

FA. The candidates of  are represented by the positions 

of the fireflies and searched for by the FA, where the 

candidates of the numerator parameter vector  are 

estimated by the linear LS method. 

Of course, it is possible to optimize both  and 

 directly using only the FA.However, such a naive 
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method makes the FA computationally 

demandingbecause the dimension of the search space 

increases. The proposed separable LS approach is more 

efficient in that it reduces the dimension of the search 

space by about half.  

The proposed model reduction algorithm is described 

as follows: 

Step 1: Initialization 

Generate an initial population of fireflies with random 

positions  [ ] (         ). 

Set the iteration counter to 0. 

Step 2: Estimation of numerator parameter  

Calculate the numerator parameter vector  [ ]from (7) 

by the linear LS methodfor   [ ] (         ) .In 

practice, the integral in(7) is carried out by a numerical 

integration methodsuch as the trapezoidal rule with a 

reasonable range [    ]. 

Step 3: Light intensity calculation 

Calculate the light intensity   of each firefly from(8): 
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where the range of the integral is set to[    ] as in step 

2.Note that the light intensity is the inverse of the cost 

function (6), i.e., maximizing the light intensity means 

minimizing the cost function. 

Step 4: Sorting of the fireflies 

Sort the fireflies in ascending order of their light 

intensities and find the current best position: 
 

      
   [ ] (9) 

 

Step 5: Movement of the fireflies 

If   ( [ ]  [ ])    ( [ ]  [ ]) , move a firefly  at 

position [ ] toward a brighter firefly  atposition  [ ] by  
 

  [ ]   [ ]       (     
 ) ( [ ]   [ ])     
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where     is the Euclidean distance between   [ ]and [ ] , 

  isthe attractivenessat         is themedia absorption 

coefficient,    is the randomization parameter, and 

    ()  is uniformly distributed random number with 

amplitude in the range [        ].         (     
 )is 

the attractiveness between the fireflies  and  . 
Step 6: Repetition 

Set the iteration counter to       and go to step 2 

until the prespecified iteration number    . 

Finally at the termination of this algorithm when  

    , the suboptimal  ̂ and the corresponding  ̂ are 

determined by the best position      
    of the firefly. 

IV. NUMERICAL SIMULATIONS 

Consider the fifth-order nonminimal phase system with 

time delaydescribed by the following transfer function 

[9]: 
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The setting parameters of the FA are chosen as 

follows: 

firefly size:         

attractiveness at      :        

media absorption coefficient:       

randomization parameter: 

           
 (for denominator parameters) 

           
 (fortime delay) 

maximum iteration number:         

The first-order and second-order reduced models with 

the time delay obtained by the proposed algorithm are 
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where the frequency-weighting function  ( )    (unity 

weighting).Note that in practice the use of the first-order 

reduced model is not realistic if the model reduction is 

carried out for a control design,because the high-order 

system (11) has resonance characteristics. 

 

Figure 1. Bode plots of the original system and reduced-order model 

(  ( )   ̃ ( )). 

 

Figure 2. Bode plots of the original system and reduced-order model 

(  ( )   ̃ ( )). 
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Figure 3.Step responses of the original system and reduced-order model 

(  ( )   ̃ ( )). 

 

Figure 4.Step responses of the original system and reduced-order model 

(  ( )   ̃ ( )). 

The Bode plots of the original system  ( )  and the 

reduced-ordermodels  ̃ ( ) and  ̃ ( ) are shown in Fig. 

1 and Fig. 2. The step responses of  ̃ ( ) and  ̃ ( )are 

also respectively shown in Fig. 3 and Fig. 4, which are 

compared with those of the frequency-weighted reduced-

order models later. The first-order and second-order 

reduced models have quite large approximation errors at 

low frequencies. Since many practical systems operate in 

low-frequency ranges, we proceed to the frequency-

weighted model reduction to obtain a better 

approximation at low frequencies. The following 

frequency-weighting function with low-pass 

characteristic 
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is introduced. The first-order and second-order 

frequency-weighted reduced models are obtained as 

follows: 
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The Bode plots of the original system  ( )and the 

frequency-weighted reduced-order models  ̃  ( )  and 

 ̃  ( ) are shown in Fig. 5 and Fig. 6, and their step 

responses are shown in Fig. 7 and Fig. 8, respectively. 

Although it is difficult to judge which is better, the step 

response of  ̃ ( ) or the step response  ̃  ( ) ,the 

approximation errors of the frequency-weighted reduced 

models ̃  ( ) and  ̃  ( )are smaller than those of the 

unity-weighted reduced-order models  ̃ ( )  and  ̃ ( ) , 

respectively, at low frequencies.Moreover, the steady-

state errors of the step responses of  ̃  ( )  and 

 ̃  ( )are considerably improvedbecause the gain errors 

at the frequency    become smaller owing to the use 

of the frequency-weightingfunction with low-

passcharacteristics.Therefore, the proposed method can 

successfully carry out the frequency-weighted model 

reduction. In control design, the reduction of the steady-

state error is one of the important themes. For this 

purpose, it is effective to choose the frequency-weighting 

function  ( ) so that it has low-pass characteristics. 

 

Figure 5. Bode plots of the original system and frequency-weighted 

reduced-order model (  ( )   ̃  ( )). 

 

Figure 6. Bode plots of the original system and frequency-weighted 

reduced-order model (  ( )   ̃  ( )). 

 

Figure 7.Step responses of the original system and frequency-weighted 

reduced-order model (  ( )   ̃  ( )). 
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Figure 8.Step responses of the original system and frequency-weighted 

reduced-order model (  ( )   ̃  ( )). 

To carry out a comparison with the GA-based model 

reduction method [10], [11], Monte Carlo simulations 

with20 experiments are implemented, where 20 setups of 

the initial population are generated for both the FA and 

the GA. The population size of the GA is set to be 

        so that the number of fitness value 

calculations of the GA is the same as that of the FA.The 

integrals of the magnitude squared of the transfer 

function errors in the case of the unity weighting are 

shown in Table I. The transfer function errors obtained by 

the proposed method are almost the same as those 

obtained by the GA-based method. Table II shows the 

computational times of the proposed method and the GA-

based method (CPU: Intel(R) Core 2 Duo E8600 

3.33GHz). We can confirm that the proposed method can 

reduce the computational burden without deteriorate of 

approximation accuracy. 

TABLE I.  INTEGRALS OF THE MAGNITUDE SQUARED OF THE 

TRANSFER FUNCTION ERRORS 

model Proposed method GA-based method 

 ̃ ( ) 2.119e-2 2.120e-2 

 ̃ ( ) 2.880e-3 2.889e-3 

TABLE II.  COMPUTATIONAL TIMES  

model Proposed method GA-based method 

 ̃ ( ) 525.5 (s) 536.5 (s) 

 ̃ ( ) 1409.4 (s) 1941.6 (s) 

V. CONCLUSIONS 

In this paper, a novel method of frequency-weighted 

model reduction with a time delay for single-input, 

single-output continuous-time systems has been presented 

using a separable LS approach. The linear LS method and 

the FA are efficiently combined to determine the 

parameters of the rational part and the time delay of the 

reduced-ordermodel. The   denominator  parameters  and 

time delay are represented by the positions of the fireflies 

and searched for by the FA, where the candidates of the 

method. Simulation results show that the reduced-order 

models obtained by the proposed method yield good 

approximations to the original system for bothunity-

weighted and frequency-weighted model reduction. 

Simulation results also show that the accuracy of the 

proposed methodis comparable to that of the GA-based 

model reduction method, with smaller computational 

burden. 
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