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Abstract—Most network-based protein (or gene) function 

prediction methods are based on the assumption that the 

labels of two adjacent proteins in the network are likely to 

be the same. However, assuming the pairwise relationship 

between proteins or genes is not complete. The information 

a group of genes that show very similar patterns of 

expression and tend to have similar functions (i.e. the 

functional modules) is missed. The natural way overcoming 

the information loss of the above assumption is to represent 

the gene expression data as the hypergraph. Thus, in this 

paper, the three un-normalized, random walk, and 

symmetric normalized hypergraph Laplacian based semi-

supervised learning methods applied to hypergraph 

constructed from the gene expression data in order to 

predict the functions of yeast proteins are introduced. 

Experiment results show that the average accuracy 

performance measures of these three hypergraph Laplacian 

based semi-supervised learning methods are the same. 

However, their average accuracy performance measures of 

these three methods are much greater than the average 

accuracy performance measures of un-normalized graph 

Laplacian based semi-supervised learning method (i.e. the 

baseline method of this paper) applied to gene co-expression 

network created from the gene expression data.  

 

Index Terms—hypergraph Laplacian, protein, function, 

prediction, semi-supervised learning 

 

I. INTRODUCTION  

Protein function prediction plays a very important role 

in modern biology. Detecting the function of proteins by 

biological experiments is very time-consuming and 

difficult. Hence a lot of computational methods have been 

proposed to infer the functions of the proteins by using 

various types of information such as gene expression data 

and protein-protein interaction networks [1]. 

The classical way predicting protein function infers the 

similarity to function from sequence homologies among 

proteins in the databases using sequence similarity 

algorithms such as FASTA [2] and PSI-BLAST [3]. Next, 

to predict protein function, graph which is the natural 

model of relationship between proteins or genes can also 

be employed. This model can be protein-protein 

                                                           
Manuscript received July 1, 2013; revised February 13, 2014. 

interaction network or gene co-expression network. In 

this model, the nodes represent proteins or genes and the 

edges represent for the possible interactions between 

nodes. Then, machine learning methods such as Support 

Vector Machine [5], Artificial Neural Networks [4], un-

normalized graph Laplacian based semi-supervised 

learning method [6], the symmetric normalized and 

random walk graph Laplacian based semi-supervised 

learning methods [7], or neighbor counting method [8] 

can be applied to this graph to infer the functions of un-

annotated protein. The neighbor counting method labels 

the protein with the function that occurs frequently in the 

protein’s adjacent nodes in the protein-protein interaction 

network and hence does not utilized the full topology of 

the network. However, the Artificial Neural Networks, 

Support Vector Machine, un-normalized, symmetric 

normalized and random walk graph Laplacian based 

semi-supervised learning method utilizes the full 

topology of the network. The Artificial Neural Networks 

and Support Vector Machine are all supervised learning 

methods. The neighbor counting method, the Artificial 

Neural Networks, and the three graph Laplacian based 

semi-supervised learning methods are all based on the 

assumption that the labels of two adjacent proteins in 

graph are likely to be the same. However, SVM do not 

rely on this assumption. Unlike graphs used in neighbor 

counting method, Artificial Neural Networks, and the 

three graph Laplacian based semi-supervised learning 

methods are very sparse, the graph (i.e. kernel) used in 

SVM is fully-connected.  

The Artificial Neural Networks method is applied to 

the single protein-protein interaction network. However, 

the SVM method and three graph Laplacian based semi-

supervised learning methods try to use weighted 

combination of multiple networks (i.e. kernels) such as 

gene co-expression network and protein-protein 

interaction network to improve the accuracy performance 

measures. [5] (SVM method) determines the optimal 

weighted combination of networks by solving the semi-

definite problem. [6] (un-normalized graph Laplacian 

based semi-supervised learning method) uses a dual 

problem and gradient descent to determine the weighted 

combination of networks. [7] Uses the integrated network 

combined with equal weights, i.e. without optimization 
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due to the integrated network combined with optimized 

weights has similar performance to the integrated 

network combined with equal weights and the high time 

complexity of optimization methods. 

The un-normalized, symmetric normalized, and 

random walk graph Laplacian based semi-supervised 

learning methods are developed based on the assumption 

that the labels of two adjacent proteins or genes in the 

network are likely to be the same [6]. In this paper, we 

use gene expression data for protein function prediction 

problem. Hence this assumption can be interpreted as 

pairs of genes showing a similar pattern of expression and 

thus sharing edges in a gene co-expression network tend 

to have similar function. However, assuming the pairwise 

relationship between proteins or genes is not complete, 

the information a group of genes that show very similar 

patterns of expression and tend to have similar functions 

[8] (i.e. the functional modules) is missed. The natural 

way overcoming the information loss of the above 

assumption is to represent the gene expression data as the 

hypergraph [9], [10]. A hypergraph is a graph in which an 

edge (i.e. a hyper-edge) can connect more than two 

vertices. In [9], [10], the symmetric normalized 

hypergraph Laplacian based semi-supervised learning 

method have been developed and successfully applied to 

text categorization and letter recognition applications. To 

the best of my knowledge, the hypergraph Laplacian 

based semi-supervised learning methods have not yet 

been applied to protein function prediction problem. In 

this paper, we will develop the symmetric normalized, 

random walk, and un-normalized hypergraph Laplacian 

based semi-supervised learning methods and apply these 

three methods to the hypergraph constructed from gene 

expression data available from [11]. In the other words, 

the hypergraph is constructed by applying k-mean 

clustering method to this gene expression dataset.  

We will organize the paper as follows: Section 2 will 

introduce the definition hypergraph Laplacians and their 

properties. Section 3 will introduce the un-normalized, 

random walk, and symmetric normalized hypergraph 

Laplacian based semi-supervised learning algorithms in 

detail. Section 4 will show how to derive the closed form 

solutions of normalized and un-normalized hypergraph 

Laplacian based semi-supervised learning algorithm from 

regularization framework. In section 5, we will apply the 

un-normalized graph Laplacian based semi-supervised 

learning algorithm (i.e. the current state of art method 

applied to protein function prediction problem) to gene 

co-expression network created from gene expression data 

available from [11] and compare its accuracy 

performance measure to the three hypergraph Laplacian 

based semi-supervised learning algorithms’ accuracy 

performance measures. Section 6 will conclude this paper 

and the future direction of researches of this protein 

function prediction problem utilizing discrete operator of 

graph will be discussed. 

II. HYPERGRAPH DEFINITIONS  

Given a hypergraph G=(V,E), where V is the set of 

vertices and E is the set of hyper-edges. Each hyper-edge 

e E  is the subset of V. Please note that the cardinality 

of e is greater than or equal two. In the other words, 

2e  , for every e E . Let w(e) be the weight of the 

hyper-edge e. Then W will be the E E
R   diagonal matrix 

containing the weights of all hyper-edges in its diagonal 

entries.  

A. Definition of Incidence Matrix H of G  

The incidence matrix H of G is a 
V E

R   matrix that 

can be defined as follows 

 ,

1

0

h v e

if vertex v belongs to hyperedge e

otherwise







 

From the above definition, we can define the degree of 

vertex v and the degree of hyper-edge e as follows 

   ( ) ,e Ed v w e h v e     

 ( ) ,v Vd e h v e    

Let 
vD and 

eD  be two diagonal matrices containing the 

degrees of vertices and the degrees of hyper-edges in 

their diagonal entries respectively. Please note that  is 

the 
v v

R


 matrix and 
eD  is the 

e e
R


 matrix.   

B. Definition of the Un-Normalized Hypergraph 

Laplacian  

The un-normalized hypergraph Laplacian is defined as 

follows 

1 T

v eL D HWD H    

C. Properties of L  

1) For every vector V
f R , we have  

 

 

 
    

2

,

1

2

T

e E u v E

w e
f Lf f u f v

d e
 

      

2) L is symmetric and positive-definite 

3) The smallest eigenvalue of L is 0, the 

corresponding eigenvector is the constant one 

vector 1 

4) L has V  non-negative, real-valued eigen values 

1 20
V

         

Proof: 

1) We know that 

 

 

 
    

2

,

1

2
e E u v E

w e
f u f v

d e
 

    

 

 

 
        2 2

,

1
2

2
e E u v E

w e
f u f v f u f v

d e
 

      

 

 
          

2

, , ,e E u v V

w e
f u f u f v h u e h v e

d e
      
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 

 
       2

,

( , )
( ) ( ) ( , ) , ,

( )
e E u V v V e E u v V

w eh v e
w e f u h u e f u f v h u e h v e

d e d e
           

 

 
       2

,( ) ( ) ( , ) , ,e E u V e E u v V

w e
w e f u h u e f u f v h u e h v e

d e
         

 
 

 
       

2

,( ) ( , ) , ,u V e E e E u v V

w e
f u w e h u e f u f v h u e h v e

d e
         

 
 

 
       

2

,( ) , ,u V e E u v V

w e
f u d u f u f v h u e h v e

d e
       

1T T T

v e
f D f f HWD H f


   

 1T T

v e
f D HWD H f


   

T
f Lf  

2) L is symmetric follows directly from its own 

definition.  

Since for every vector v
f R ,  

 
2

,

1 ( )
( ( ) ( )) 0

2 ( )

T

e E u v E

w e
f Lf f u f v

d e
 

       

We conclude that L is positive-definite.  

3) The fact that the smallest eigenvalue of L is 0 is 

obvious. 

Next, we need to prove that its corresponding 

eigenvector is the constant one vector 1.  

Let 
v

vd R  be the vector containing the degrees of 

vertices of hypergraph G, E

ed R  be the vector 

containing the degrees of hyper-edges of hypergraph G, 
E

w R  be the vector containing the weights of hyper-

edges of G, 1
v

R  be vector of all ones, and 
E

one R  

be the vector of all ones. Hence we have 

1 11 ( )1

one 0

T

v e v e e

v v v v

L D HWD H d HWD d

d HW d Hw d d

    

      
 

4) (4) follows directly from (1)-(3).  

D. The Definitions of Symmetric Normalized and 

Random Walk Hypergraph Laplacians  

The symmetric normalized hypergraph Laplacian 

(defined in [9], [10]) is defined as follows  

1 1

12 2T

sym v e vL I D HWD H D
 

    

The random walk hypergraph Laplacian (defined in [9], 

[10]) is defined as follows  

1 1 T

rw v eL I D HWD H     

E. Properties of 
sym

L  and rwL   

1) For every vector 
v

f R , we have  

 

 

 

 

 

 

 

2

,

1

2

T

sym e E u v E

w e f u f v
f L f

d e d u d v
 

 
    
 
 

  

2) λ is an eigenvalue of rwL  with eigenvector u if 

and only if λ is an eigenvalue of symL  with 

eigenvector 

1

2
vw D u   

3) λ is an eigenvalue of rwL  with eigenvector u if 

and only if λ and u solve the generalized eigen-

problem 
u VL D u   

4) 0 is an eigenvalue of 
rwL  with the constant one 

vector 1 as eigenvector. 0 is an eigenvalue of 
symL  

with eigenvector 
1

21vD   

5) 
symL  is symmetric and positive semi-definite and 

symL  and 
rwL  have V  non-negative real-valued 

eigenvalues 
10

V
       

Proof: 

1) The complete proof of (1) can be found in [9]. 

2) (2) can be seen easily by solving 
1 1

12 2

1 1 1 1

12 2 2 2

1 1 1

1 12 2 2

( )

( )

T

sym v e v

T

v v e v v

T

v v e v v

L w w I D HWD H D w w

D I D HWD H D w D w

D w D HWD H D w D w

 





 


   


  
 

   

  

  

  

Let 

1

2
vu D w


 , (in the other words, 
1

2
vw D u ), we have 

1 1

1 1( )

T

sym v e

T

v e

rw

L w w u D HWD H u u

I D HWD H u u

L u u

 





 

 

   

  

 

 

This completes the proof.  

3) (3) can be seen easily by solving 
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1 1

1 1

1

( )

( )

( )

T

rw v e

T

v v e v

T

v e v

v

L u u I D HWD H u u

D I D HWD H u D u

D HWD H u D u

Lu D u

 







 

 



   

  

  

 

  

This completes the proof.  

4) First, we need to prove that 1 0rwL  .  

Let v

vd R  be the vector containing the degrees of 

vertices of hypergraph G, E

ed R  be the vector 

containing the degrees of hyper-edges of hypergraph G, 
E

w R  be the vector containing the weights of hyper-

edges of G, 1
V

R  be vector of all ones, and E
one R  

be the vector of all ones. Hence we have  

1 1

1 1

1

1

1 ( )1

1

1

1

0

T

rw v e

v e e

v

v

L I D HWD H

D HWD d

D HWone

D Hw

 

 





 

 

 

 



  

The second statement is a direct consequence of (2). 

5) The statement about 
symL  is a direct consequence 

of (1), then the statement about 
rwL  is a direct 

consequence of (2). 

III. ALGORITHMS  

Given a set of proteins  1, , , ( 1), , ( )x xl x l x l u     

where n l u   is the total number of proteins (i.e. 

vertices) in the hypergraph G=(V,E) and given the 

incidence matrix H of G. The method constructing H 

from the gene expression data will be described clearly in 

the Experiments and Results section. 

Define c be the total number of functional classes and 

the matrix n cF R   be the estimated label matrix for the 

set of proteins  1, , , ( 1), , ( )x xl x l x l u    , where the 

point ix is labeled as sign ( )ijF  for each functional class j 

(1 )j c  . Please note that  1, ,x xl  is the set of all 

labeled points and     1 , , ux l x l    is the set of all 

un-labeled points.  

Let n cY R   the initial label matrix for n proteins in 

the hypergraph G be defined as follows 

1      1

1      1

0  1

i

ij i

if x functional class j and i l

Y if x functional class j and i l

if l i n

  


    
   

 

Our objective is to predict the labels of the un-labeled 

points 
+1, ,l l ux x  . Basically, all proteins in the same 

hyper-edge should have the same label.  

Random walk hypergraph Laplacian based semi-

supervised learning algorithm 

In this section, we will give the brief overview of the 

random walk hypergraph Laplacian based semi-

supervised learning algorithm. The outline of the new 

version of this algorithm is as follows 

1) Construct 
vD and 

eD  from the incidence matrix H 

of G 

2) Construct 1 1 T

rw v eS D HWD H    

3) Iterate until convergence    1
(1 )

t t

rwF S F Y 

   , 

where α is an arbitrary parameter belongs to [0,1] 

4) Let F   be the limit of the sequence   t
F . For 

each protein functional class j, label each protein 

 1ix l i l u     as sign  ijF   

Next, we look for the closed-form solution of the 

random walk graph Laplacian based semi-supervised 

learning. In the other words, we need to show that 

  1lim (1 )( )
t

rw
t

F F I S Y  


     

Suppose  0
F Y . Thus, by induction,  

 
1

0

(1 ) ( )
t

t t t i

rw rw

i

F S Y S Y  




     

Since 
rwS  is the stochastic matrix, its eigenvalues are 

in [-1,1]. Moreover, since 0<α<1, thus 

lim 0t t

rw
t

S


  

   
1

1

0

lim
t

i

rw rw
t

i

S I S 







   

Therefore, 

  1lim (1 )( )
t

rw
t

F F I S Y  


     

Now, from the above formula, we can compute F   

directly. 

Symmetric normalized hypergraph Laplacian based 

semi-supervised learning algorithm 

Next, we will give the brief overview of the symmetric 

normalized hypergraph Laplacian based semi-supervised 

learning algorithm which can be obtained from [9,10]. 

The outline of this algorithm is as follows 

1) Construct 
vD and 

eD  from the incidence matrix H 

of G 

2) Construct 
1 1

12 2T

sym v e vS D HWD H D
 

   

3) Iterate until 

convergence    1
(1 )

t t

sym
F S F Y 


   , where α is 

an arbitrary parameter belongs to [0,1] 

4) Let F 
 be the limit of the sequence   t

F . For 

each protein functional class j, label each protein 

 1ix l i l u    as sign  ijF   

Next, we look for the closed-form solution of the 

normalized graph Laplacian based semi-supervised 

learning. In the other words, we need to show that 

  1lim (1 )( )
t

sym
t

F F I S Y  


     

Suppose 
 0

F Y . Thus, by induction  
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   
1

0

(1 )
t

it t t

sym sym

i

F S Y S Y  




     

Since 
symS  is similar to 

rwS  

(
1 1

1 1 2 2T

rw v e v sym vS D HWD H D S D


   ) which is a 

stochastic matrix, eigenvalues of 
symS  belong to [-1,1]. 

Moreover, since 0<α<1, thus  

lim 0t t

sym
t

S


  

 
1

1

0

lim ( )
t

i

sym sym
t

i

S I S 







   

Therefore, 

  1lim (1 )( )
t

sym
t

F F I S Y  


     

Now, from the above formula, we can compute F 
 

directly. 

Un-normalized hypergraph Laplacian based semi-

supervised learning algorithm 

Finally, we will give the brief overview of the un-

normalized hypergraph Laplacian based semi-supervised 

learning algorithm. The outline of this algorithm is as 

follows 

1) Construct 
vD and 

eD  from the incidence matrix H 

of G 

2) Construct 1 T

v eL D HWD H     

3) Compute closed form solution 1( )F L I Y    , 

where   is any positive parameter 

4) For each protein functional class j, label each 

protein  1ix l i l u     as sign  ijF   

The closed form solution F 
 of un-normalized 

hypergraph Laplacian based semi-supervised learning 

algorithm will be derived clearly and completely in 

Regularization Framework section.  

IV. REGULARIZATION FRAMEWORKS  

In this section, we will develop the regularization 

framework for the symmetric normalized hypergraph 

Laplacian based semi-supervised learning iterative 

version. First, let’s consider the error function  

 
 

      

2

2

, 1

1

2

v

u v
i i

e E u v E i

w e F F
E F F Y

d e d u d v


  

 
 

    
 
 

  
 

In this error function  E F , 
iF  and 

iY  belong to cR . 

Please note that c is the total number of protein functional 

classes and   is the positive regularization parameters. 

Hence 

1 1

 and 

T T

T T

V V

F Y

F Y

F Y

   
   

    
   
   

 

Here  E F  stands for the sum of the square loss 

between the estimated label matrix and the initial label 

matrix and the sum of the changes of a function F over 

the hyper-edges of the hypergraph [9].  

Hence we can rewrite  E F  as follows 

         
TT

symE F trace F L F trace F Y F Y     

Our objective is to minimize this error function. In the 

other words, we solve  

0
E

F





 

This will lead to  

 
1 1

12 2

1 1

12 2

0

    

T

v e v

T

v e v

I D HWD H D F F Y

F D HWD H D F F Y



 

 


 


 
    

 

  

 

1 1

12 2

1 1

12 2

1

1 1

1

1 1

T

v e v

T

v e v

F D HWD H D F Y

I D HWD H D F Y



 



 

 


 


 
 

 
  

  

 

Let 1

1






. Hence the solution F 

 of the above 

equations is 

1 1

1 12 2(1 )( )T

v e vF I D HWD H D Y 
 

       

Please note that 1 1 T

rw v eS D HWD H   is not the 

symmetric matrix, thus we cannot develop the 

regularization framework for the random walk 

hypergraph Laplacian based semi-supervised learning 

iterative version.  

Next, we will develop the regularization framework for 

the un-normalized hypergraph Laplacian based semi-

supervised learning algorithms. First, let’s consider the 

error function  

 
 

  

2 2

, 1

1

2

v

u v i i

e E u v E i

w e
E F F F F Y

d e


  

  
    

  
    

In this error function  E F , 
iF  and 

iY  belong to cR . 

Please note that c is the total number of protein functional 

classes and   is the positive regularization parameters. 

Hence 

1 1

 and 

T T

T T

V V

F Y

F Y

F Y

   
   

    
   
   

 

Here  E F  stands for the sum of the square loss 

between the estimated label matrix and the initial label 

matrix and the sum of the changes of a function F over 

the hyper-edges of the hypergraph [9]. 

Hence we can rewrite  E F  as follows 

      TTE F F LF trace F Y F Y     
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Please note that un-normalized hypergraph Laplacian 

matrix is 1 T

v eL D HWD H  . Our objective is to 

minimize this error function. In the other words, we solve  

0
E

F






 

This will lead to  

 

 

0LF F Y

L I F Y



 

  

 

  

Hence the solution F 
 of the above equations is 

1( )F L I Y      

Similarly, we can also obtain the other form of solution 

F 
 of the normalized graph Laplacian based semi-

supervised learning algorithm as follows (note the 

symmetric normalized hypergraph Laplacian matrix is  

1 1

12 2T

sym v e vL I D HWD H D
 

   

1( )symF L I Y      

V. EXPERIMENTS AND RESULTS  

A. Datasets  

In this paper, we use the dataset available from [11] 

and the references therein. This dataset contains the gene 

expression data measuring the expression of 4062 S. 

cerevisiae genes under the set of 215 titration 

experiments. These proteins are annotated with 138 GO 

Biological Process functions. In the other words, we are 

given gene expression data (
4062 215R 

) matrix and the 

annotation (i.e. the label) matrix (
4062 138R 

). Every 

expression value is normalized to z-transformed score 

such that every gene expression profile has the mean 0 

and the standard deviation 1.  

B. Experiments  

In this section, we experiment with the above proposed 

three methods and the current state of the art network-

based method (i.e. the un-normalized graph Laplacian 

based semi-supervised learning method) in terms of 

classification accuracy performance measure. All 

experiments were implemented in Matlab 6.5 on virtual 

machine. 

Given the gene expression data, we can define the co-

expression similarity ijS  of gene i and gene j as the 

absolute value of the Pearson’s correlation coefficient 

between their gene expression profiles. We have 

      , ,: , ,:S i j corr g i g j , where g(i,:) and g(j,:) 

are gene expression profiles of gene i and gene j 

respectively. We can define the adjacency matrix A 

(
4062 4062R 

) as follows 

 
 

 

1  ,
,

0  ,

if s i j threshold
A i j

if s i j threshold


 



  

In this paper, without bias, we can set threshold be 0.5. 

Then the un-normalized graph Laplacian based semi-

supervised learning method can be applied to this 

adjacency matrix A. The un-normalized graph Laplacian 

based semi-supervised learning method (i.e. the current 

state of the art method in network-based methods for 

protein function prediction) will be served as the baseline 

method in this paper. Its average accuracy performance 

measure for 138 GO Biology Process functions will be 

compared with the average accuracy performance 

measures of thee hypergraph Laplacian based semi-

supervised learning methods. Please note that three-fold 

cross validation is used to compute the average accuracy 

performance measures of all four methods used in this 

paper. The accuracy performance measure Q is given as 

follows 

  

    

True Positive True Negative
Q

True Positive True Negative False Positive False Negative




  

 

Normally, clustering methods offer a natural way to 

the problem identifying groups of genes that show very 

similar patterns of expression and tend to have similar 

functions [8] (i.e. the possible functional modules) in the 

gene expression data. In this experiment, we use k-mean 

clustering method (i.e. the most popular “hard” clustering 

method) since there exists at least one protein that has 

one GO Biological Process function only. Without bias, if 

all genes in the gene expression data have at least two GO 

Biological Process functions, we will use “soft” k-mean 

clustering method or fuzzy c-means clustering method. 

Then each cluster can be considered as the hyper-edge of 

the hypergraph. By using these hyper-edges, we can 

construct the incidence matrix H of the hypergraph. To 

make things simple, we can determine the number of 

cluster of the k-means method as follows  

  
  

2

number of proteins
number of cluster   

When H is already computed, the random walk, 

symmetric normalized, and un-normalized hypergraph 

Laplacian based semi-supervised learning can be 

implemented. Finally, their average accuracy 

performance measures for all 138 GO Biological Process 

functions will be computed. These average accuracy 

performance measures of the three hypergraph Laplacian 

based methods are given in the following Table I. In these 

experiments, the parameter α is set to 0.85 and 1  . 

From the above table, we recognized that the average 

accuracy performance measures for 138 GO Biological 

Process function of three hypergraph Laplacian based 

semi-supervised learning are equal. This will be 

investigated in the future and in the other biological 

datasets such as protein-protein interaction networks. 

Interestingly, the average accuracy performance 

measures for 138 GO Biological Process of three 

hypergraph Laplacian based semi-supervised learning 

methods are much greater than the average accuracy 

performance measures of graph Laplacian based semi-

supervised learning method. 
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TABLE I.   

 Average Accuracy Performance Measure 

138 GO Biological 
Process functions 

Graph 
(un-normalized) 

Hypergraph 
(un-normalized) 

Hypergraph 
(random walk) 

Hypergraph 

(normalized) 

63.99 97.95 97.95 97.95 

 

VI. CONCLUSIONS  

We have proposed the detailed algorithms and 

regularization frameworks of the three un-normalized, 

symmetric normalized, and random walk hypergraph 

Laplacian based semi-supervised learning methods 

applying to protein function prediction problem. 

Experiments show that these three methods greatly 

perform better than the un-normalized graph Laplacian 

based semi-supervised learning method since these three 

methods utilize the complex relationships among proteins 

(i.e. not pairwise relationship). Moreover, these three 

methods can not only be used in the classification 

problem but also the ranking problem. In specific, given a 

set of genes (i.e. the queries) involved in a specific 

disease such as leukemia which is my future research, 

these three methods can be used to find more genes 

involved in leukemia by ranking genes in the hypergraph 

constructed from gene expression data. The genes with 

the highest rank can then be selected and checked by 

biology experts to see if the extended genes are in fact 

involved in leukemia. Finally, these selected genes will 

be used in cancer classification. 

Recently, to the best of my knowledge, the un-

normalized graph p-Laplacian based semi-supervised 

learning method have not yet been developed and applied 

to protein function prediction problem. This method is 

worth investigated because of its difficult nature and its 

close connection to partial differential equation on graph 

field.  
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