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Abstract—The aim of this paper is to develop advanced 

controllers for electromechanical motion systems. A new 

controller is proposed to take into account the inherent non-

linear disturbances, measurement noise, and variations and 

uncertainties in process behavior. It consists of a Linear 

Quadratic Gaussian (LQG) controller and a separate 

supplementary MRAS-based Learning Feed-Forward 

Controller (LFFC). Instead of design that is based on a fixed 

mathematical model of the process, the optimal steady-state 

filter gain   in the Linear Quadratic Estimator (LQE) and 

the feedback gain   in the Linear Quadratic Regulator 

(LQR) can be determined based on the parameters of the 

feed-forward part, which follows continuously the process at 

different load conditions. This will result in “an adaptive 

LQG combined with the MRAS-based LFFC”. Simulation 

results demonstrate the potential benefits of the proposed 

method. 

 

Index Terms—model reference adaptive systems (MRAS), 

linear quadratic gaussian (LQG), learning feed-forward 

control (LFFC), motion control systems 

 

I. INTRODUCTION 

Motion control systems can be quite complicated 

because many different factors have to be considered in 

the design [1], [4]. The following issues must typically be 

considered: (a) reduction of the influence of plant 

disturbances; (b) attenuation of the effect of measurement 

noise; (c) variations and uncertainties in plant behavior. It 

is difficult to find design methods that consider all these 

factors, especially for the conventional control 

approaches where control designs involve compromises 

between conflicting goals.  

We start by considering a conventional PID controlled 

system. For this type of controller, reduction of the effect 

of measurement noise suggests low PID gains, but 

attenuation of process disturbances suggests high PID 

gains. Both requirements cannot be achieved 

simultaneously [2], [4]. This problem can be overcome 

by using more advanced controllers.  

LQG is basically a combination of a Linear Quadratic 

Estimator (LQE) with a Linear Quadratic Regulation 

(LQR) [2], [10]. The Separation principle guarantees that 

if a stable LQE and a stable LQR are designed for a linear 

time-invariant system, then a combined LQE and LQR 

results in a stable LQG system. Normally, the LQG 
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design is based on a fixed mathematical model of the 

process. The estimator and feedback controller may be 

designed independently. It enables us to compromise 

between regulation performance and control effort, and to 

take into account process and measurement noise.  

The MRAS-based LFFC aims to acquire the (stable 

part of the) inverse dynamics of the plant [7]. The idea of 

LFFC is applied but without using the complex neural 

networks. Instead, we propose to use MRAS-based 

adaptive components [1], [8]. A reference model is used 

to generate a desired set of states. The feed-forward 

signal is obtained by summing the profile set-point 

signals multiplied by appropriate weights. On-line 

parameter adaptation is utilized to reduce the effect of the 

disturbances such as mass deviation, and friction force 

resulting in a dynamic inverse of the process. With feed-

forward control, the state-dependent disturbances can be 

compensated, before they have time to affect the system. 

The control action for disturbance rejection is obtained 

from the feed-forward path output. The MRAS-based 

LFFC can be applied to arbitrary motion profiles. 

It is clear that, the combination of LQG and MRAS 

based LFFC control structure is shown to be superior to 

the two control methods when used separately [1], [3]. 

This is a robust, high-performance control scheme that 

combines the advantages and overcomes the 

disadvantages of both types of techniques. However, the 

LQG algorithm may fail to ensure closed-loop stability if 

the variations or/and uncertainties are large enough [2]. 

In this study, design of an adaptive LQG combined 

with the MRAS-based LFFC is developed for motion 

system. The proposed control structure is based on the 

following observation: In Section III, as can be seen in 

Fig. 5, after a short time the parameters in the feed-

forward part converse quickly to stationary process 

values (     ;      ; and      ). They denote 

the characteristic of the process model and could be used 

for the LQG design. This will result in an adaptive LQG. 

This paper is organized as follows: First, the dynamic 

characteristic of the setup is analyzed in Section II. In 

Section III, a MRAS-based LFFC is designed by applying 

Lyapunov’s stability theory. The validity of the proposed 

control structure is simulated in Section IV when the 

system is subject to external disturbance and parameter 

variation. Finally, some concluding remarks are drawn in 

Section V. 
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II. MATHEMATICAL MODEL OF THE SETUP 

The setup (see Fig. 1) is designed for the purpose of 

testing the results of the controller for linear and non-

linear systems. It consists of a slider which can move 

back and forth over a rail. A DC motor, rail and slider are 

fixed on a frame. The parameters of this setup are shown 

in Table I [1]. 

 

Figure 1.   The configuration of the setup 

The mechanical part of the setup is designed 

mimicking printer technology. For this process, a 

computer based control system has been implemented 

with software generated by MATLAB.  

 

Figure 2.   Second order model of the setup 

TABLE I.  PLANT PARAMETERS OF THE SETUP 

Element Parameter Value 

Motor-Gain Motor constant  8.5 N/A 

Motor-Inertia  Inertia of the motor  2e-5 kg 

Load  Mass of the end effector (slider)  0.35 kg 

Belt-Flex  Spring constant  80 kN/m 

 Damping in belt  1 Ns/m 

Damper  Viscous friction  8 Ns/m 

 Coulomb friction  0.75 N 

 

The Damper component represents a viscous and 

Coulomb friction. Coulomb friction always opposes 

relative motion and is simply modeled as 

                                   (      ̇)                         (1) 

where    is the Coulomb parameter of the Damper 

element,  ̇ is the velocity of the load. Viscous friction is 

proportional to the velocity. It is normally described as 

                                        ̇                                       (2) 

where   is the viscous parameter of the Damper element.  

The mathematical expression for the combination of 

viscous and Coulomb friction is 

                     ̇         (      ̇)        (3) 

If the non-linear Coulomb friction part is disregarded, 

the model only contains linear components. In this case 

we get a linear process model. A second order 

approximation model is obtained with a state space 

description as given in (4) [1]. 
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where    is the velocity of the load;    is the position of 

the load; and   is applied force on the process. When we 

mention the nonlinear friction term of the Damper 

element then: 
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The second order model of the setup is given in Fig. 2. 

III. DESIGN OF MRAS – BASED LFFC 

In a model reference adaptive system the reference 

model can play the role of a setpoint generator [1], [8]. 

This leads to the structure of Fig. 3, where the derivative–

generating structure of the state variable filter is clearly 

visible. The reference model is described by 
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Figure 3.   A process, an inverse process, and a reference model  

Describe the process model in state variables  
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where 
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By means of the feed-forward controller, the SVF 

output signals can be used to generate an inverse model 

of the process [7], [8]. We should try to find a learning 

mechanism that, based on the errors between the output 

   of the setpoint generator and the process output   , 

adjusts the parameters   ,    and    such that they 

converge to the process parameters   ,    and   , 

respectively. 

This suggests that we can use the well–known 

Liapunov approach to find stable adaptive laws for the 

feed–forward parameters. The design problem is thus: 

Find (stable) adjustment laws for the adjustable 

parameters   ,    and    such that the error e between 

the setpoint generator and the process as well as the error 

in the feed–forward parameters asymptotically go to zero. 

The following steps are thus necessary to design an 

adaptive controller with the method of Liapunov [6], [11]: 

 

Figure 4.   An adaptive inverse process designed with Liapunov 

Step 1: Determine the differential equation for   

Describe the reference model in state variables: 
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Rewrite the process model in state variables: 

                                    ̇                                        (11) 
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Here we introduce error  , which is defined in (15). 
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By subtracting (14) from (10), we get 
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where 
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Step 2: Choose a liapunov function  ( ) 
Simple adaptive laws are found when we use the 

Liapunov function 

                  ( )                                   (20) 

where    is an arbitrary definite positive symmetrical 

matrix;   and   are vectors which contain the non-zero 

elements of the    and   matrices in (18);   and   are 

diagonal matrices with positive elements which 

determine the speed of adaptation.  

Step 3: Determine the conditions under which  ̇( ) is 

definite negative 

 ̇  (             )
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            (   )                                             (21) 
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Let: 

                                                                   (22) 

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

132©2015 Engineering and Technology Publishing



According to Liapunov’s stability theory, as long as   

is stable, there always exist such positive definite matries     

  and  . This implies that the first part of (21): 

                              (      )                      (23) 

is definite negative. Such that stability of the system can 

be guaranteed if the two last parts of (21) get zero 
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After some mathematical manipulations, this yields: 
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From (14) it follows that: 
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It is given by the following expression to complete 

parameter update 
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From (19) it follows that: 
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There are given by the following expression to 

complete parameter update 
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where     and     are called the adaptive gains, and   , 

  ,  , and     are defined in Fig. 4;     and     are 

elements of the   matrix. The resulting adaptive system 

has been given (see Fig. 4). 

Like in any MRAS-based system, adaptive disturbance 

compensation can be added, by realizing that the 

parameter    acts on an extra input signal  , instead of 

on one of the state variables: 
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Step 4: Solve    from    
          

Let 
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which yields the following matrix equation: 
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This can be rewritten as: 
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This yields 
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Based on (30), (32), and (33) the adaptive system 

designed with Liapunov in Fig. 2 is redrawn as in Fig. 3. 

The following numerical values are chosen: 

     ;      ;          ;         ;     ; 
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]; 
 

   
     ; 

 

   
   . 

The settings result 

        
  ;          

  . 

 

Figure 5.   Simulation results (a load variation is added at      [s] 

As it can be seen in Fig. 5 adaptive   ,    and     

automatically reach to stationary process values (   
                              ). 

Especially, when a variation of the load is switched on at 

     [s], after a few motions, the parameters   ,     
and    quickly search to the new stationary values. They 

denote the characteristic of the process model and could 

be used for the LQG design. 

IV. DESIGN OF PROPOSED CONTROL STRUCTURE 

Fig. 5 shows the block diagram of the proposed control 

structure, which combines an MRAS-based LFFC and a 

separate adaptive LQG controller. The model of the 

process to be controlled was introduced in Section II. The 
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plant state vector is chosen such that it consists of the 

position and its corresponding velocity. In the feed-

forward control part, the parameter adaptation is driven 

by the tracking error between reference output and 

measured process output, while in the LQG part the 

observer is driven by the prediction errors between 

measured process variables and corresponding estimated 

variables [2], [3]. 

The design of MRAS – based LFFC was shown in 

Section III. The    - matrix of the process model is used 

to calculate the solution   of the Liapunov equation. In 

the adjustment laws the derivative of the error is needed. 

This derivative can be obtained by means of a second-

order state variable filter. For the Coulomb friction 

adaptive component   , the sgn of the reference velocity 

is used as the input (see Fig. 6). 

 

Figure 6.   Adaptive LQG combined with MRAS – based LFFC 

(      , and    in the feed – forward part are used for LQG design) 

LQGenables us to optimize the system performance 

and to reduce the harmful effects of measurement noise 

[2]. The LQE yields the estimated states of the process. 

The LQR calculates the optimal gain vector and then 

calculates the control signal. However, in state feedback 

controller designs reduction of the tracking error is not 

automatically realized [10].  

We consider the LQG design based on the 2nd order 

mathematical model. The optimal gain   in LQE and the 

feedback gain   in the LQR are determined based on the 

parameters      , and    of the feed-forward part, 

which follows continuously      , and    of the process 

at different load conditions, respectively. 

Continuous LQR design [2]: 

We consider a continuous-time linear plant described 

by 

                            ̇                                   (40) 

                                                                (41) 

With a performance index defined as 

            ∫ (       
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In (40), (41) and (42)    and    are continuous state 

matrices of the plant to be controlled,    denotes the state 

of the plant,   is the tracking error,   is the control signal, 

   and    are matrices in the optimization criterion (   

is positive semi-definite weighting matrix and    is 

positive definite weighting). The optimal state feedback 

controller will be achieved by choosing a feedback vector 

       
    

                               (43) 

in which    is found by solving the continuous time 

algebraic Riccati equation 
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The output of the state feedback controller is 

                                        ̂                                (45) 

where 

                               ̂  [ ̂   ̂  ] ,                     

 ̂   and  ̂   denote the state of the estimator (see Fig. 6). 

The following parameters are used in the simulation: 
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These values results in the following feedback 

controller gains 
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Continuous LQE design [2]: 

The feedback matrix      yielding optimal estimation 

of the process states is computed as 

                                          
                             (47) 

where  is the solution of the following matrix Riccati 

equation 
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in which    and    are continuous state matrices of the 

plant to be controlled,    is the system noise covariance, 

and    the sensor noise covariance. The following 

settings were used: 
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];    [  ];    [
     
     

];  

            .                                     

These values results in the following feedback 

controller gains 

                                           [
  
  
]                                 

Fig. 7 shows the corresponding responses for the 

system depicted in Fig. 6. In order to evaluate 

implementation of the adaptive controller, the sudden 

values of the load are added during the simulation period. 

As it can be seen in Fig. 7a and Fig. 7b, adaptive 

parameters in the feed – forward part   ,   ,   , and 

adaptive filter gains   ,    in the LQE automatically 

reach stationary values. When a mass variation of the 

load is switched on (at      [s]), after a few motions, 
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the parameters   ,   ,    and   ,    quickly search the 

new stationary values. 

 

Figure 7a.   Parameters in the adaptive feed – forward part 

 

Figure 7b.   Adaptive filter gain   in the LQE 

As can be seen in Fig. 7c, in the beginning the 

maximum tracking error is large. However, when the 

adaptive gains    and    reach its stationary values (see 

Fig. 7d), it will decrease quickly to a small value. When a 

load disturbance is added, after a short time, the current 

tracking error converges rapidly to a small value. The 

controlled system is stable and shows convergence in the 

parameters.  

 

Figure 7c.   Simulation results of controlled system (a load mass 

variation is added at      [s]). 

 

Figure 7d.   Adaptive feedback gain   in the LQR 

The compensation of the Coulomb friction force can 

be clearly observed in Fig. 8. When the adaptive 

Coulomb friction compensator is used, the effect of 

friction was compensated considerably. It can be stated 

that in motion control systems, Coulomb friction 

compensation is the key factor to obtain small tracking 

errors.  

 

Figure 8.   True and estimated Coulomb friction 

With the LQG, noise on the measurements of the 

process has almost no influence on thesystem. This is 

illustrated in Fig. 9; the real position state (first line) and 

the position state error (third line) are corrupted by 

measurement noise, whereas,the estimated position state 

(second line) and the control signal (lowest line) are 

almost clean.  

 

Figure 9.   Control signal is insensitive for measurement noise 

The LQG is designed to obtain a stable closed-loop 

system that is insensitive to measurement noise and 

variations and uncertainties in process behavior [2], [10].  

V. DISCUSSION 

In this study, the design of an MRAS-based LFFC was 

carried out with the second-order example; however the 

approach can be effectively applied to higher order 

systems as well.  

The advantages of the use of the profile setpoint 

signals are that they are easily accessible and noise free. 

The adjustable parameter component has an integral 

component inside. This implies that even when the 

learning signal is corrupted by measurement noise the 

output signal is almost clean. This allows us using a large 

learning signal to shorten the setting time. 
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In case of an MRAS-based LFFC, when all 

disturbances can be effectively compensated for by a 

feed-forward signal, this allows us to reduce the values of 

the feedback controller gains. In this case measurement 

noise has almost no influence on the system. 

The parameters of the LQG controller are given 

adaptive values that follow with the varying values of the 

plant. With the parameter variations of the plant 

considered here it appeared that the LQG was robust 

enough to deal with these variations and to produce good 

enough results for the basic feedback control system. 

VI. CONCLUSION 

Adaptive LQG combined with MRAS-based LFFC 

offers a potential solution to deliver more accurate and 

high overall performance in the presence of all the 

preceding issues. We investigated the effect of the 

controller from the simulation results. Compared to the 

case with LQG controller only, the proposed controller, 

for instance, can do the following (see Fig. 7, Fig. 8, and 

Fig. 9): (a) Improve the transient behavior of the system; 

(b) Decrease the sensitivity to plant parameter changes; (c) 

Eliminate steady-state errors; and (d) Decrease the 

influence of load disturbances and measurement noise. 

Strong properties achieved via the proposed method 

confirm that adaptive LQG combined with MRAS-based 

LFFC is an attractive approach for controlling 

electromechanical motion systems. 
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