
Centralized Group Buying Approach for Multiple

Cooperative Task Allocation

Gun-Hee Moon, Dong-Wan Yoo, Byung-Yoon Lee, Hae-In Lee, and Min-Jae Tahk
Korea Advanced Institute of Science and Technology, Aerospace Engineering, Daejeon, Korea

Email: {ghmoon, dwyoo, bylee, hilee, mjtahk}@fdcl.kaist.ac.kr

Abstract—This paper is about a centralized group buying

task assignment algorithm (CGBA) for cooperative multiple

task assignment, which are non-synergetic and hardly

constrained on the minimum required number of agents to

perform it. CGBA utilize greedy market strategy for each

agent’s path decision, and gives an incentive to the task with

a larger required number of agents. In the multi-

cooperative task allocation, there is a distinguish problem

that would cause infinite loop in mission, which is defined as

cross deployment. To resolve this, a checking algorithm

using before & after task list is also proposed. Numerical

experiment confirms that the algorithm gives a suboptimal

solution in polynomial time. 

Index Terms—group buying, multi-agents, swarm robots,

UAV task assignment

I. INTRODUCTION

A. Mult-Allocation Cooperative Task

In the future, it is expected that swarm robots would be

employed for a variety of missions that are incapable of

being performed by a single agent. For instance, multiple

UAVs are capable of transporting a heavy load in slung

load style. The slung load is a freight delivery style,

linking vehicle with cargo by external cables. One UAV

cannot shift a heavy cargo, that exceed its’ thrust capacity,

alone. However a couple of UAVs, which linked with a

package, may get a chance to lift the object.

In order to efficiently utilize the multi-agents system,

several researches related to task assignment have been

studied. Byeon used the consensus based bundle

algorithm (CBBA) for the forest fire suppression mission

[1]. The author utilized CBBA on the multiple air to air

weapon assignment, and suppression of enemy air

defense mission [2], [3]. Whitten extended the CBBA to

handle coupled-constraints [4]. Choi [5] called such a

tasks needed to be done by dual agent as duo task (DT),

which is distinguished from single task (ST). He

categorized the duo task into required duo task (RDT)

and preferred duo task (PDT).

This paper deals with a class of task similar to RDT.

However, this research is not only about the dual agent

problem, but also about a task of hardly constrained on

minimum required number of agent. Until all of the

Manuscript received December 15, 2013; revised February 11, 2014

agents gather, which are assigned to the same task, they

cannot start the mission. Because of it, there can be a

cross deployment problem in multiple cooperative task

assignment, and it will be explained more detail in the

next chapter.

B. Background

Group buying (GB) is also called as group purchasing

or collective buying. It is known to be originated from

China, where “Tuángòu” was executed to get a discount

price from retailer when a group of purchasers were

willing to buy same item. As individual customers cannot

freely make a deal with local retailers, a group of

customers with same needs are organized to fulfill the

minimum number of orders.

By the GB, individual customers as well as retailers

get satisfied. In the customer’s point of view, as

commission charges are vanished, the retailer offers

product in a discounted price. In the retailer’s point of

view, as the needs on a product are increased as much as

the customer wants, their total incomes increase.

This article is inspired from the benefits of the GB,

utilizing it for task assignment for cooperative task that

multiple allocation process is required. Centralized group

buying algorithm (CGBA) is also based on sequential

greedy algorithm (SGA) by Choi [6]. The SGA

sequentially finds out a feasible suboptimal solution in

greedy way, however, it is restricted only for multi-task

problem. Thus CGBA extends SGA to solve given

multiple cooperative task allocation problem.

Rest of the paper is organized as follows. In chapter II

the formal cooperative multi-task assignment problem is

defined. The details of CGBA are explained on chapter

III. In chapter IV, this work verifies the CGBA’s

applicability with simulations, and finishes with

conclusion in chapter V.

II. MULTIPLE COOPERATIVE TASK ASSIGNMENT

A. Problem Statement

A cooperative task assignment is decision making

problem that matches uN -agents with tN -tasks as many

as possible. By allocating agents to proper tasks, society

can gain utilities which measure its degree of satisfaction.

Mathematically, the problem is formulated as an optimal

decision problem that maximize utility summation of the

entire fleet as,

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

92©2015 Engineering and Technology Publishing
doi: 10.12720/joace.3.2.92-97

argmax (,)ij ij i ij

p j i

J u x p x
 

 (1)

subject to,

min max for

or 0

j jij

i

ij

i

n x n j

x





  






 (2)

 forij i

j

x L i


  (3)

{1,..., }, {1,..., }u ti I N j J N    (4)

where iju is the utility earned by of agent-i performing

task-j along its’ path ip , and ijx is a decision variable

indicating agent-i’s assignment to task-j. If agent-i is

allocated to task-j, ijx is one, otherwise it is zero. The

index i represents the ID number of each agent, and index

j is the ID of the task.

The purpose of this optimization is finding fleet’s path

plan P that maximizes utility summation. The utility

summation of whole agent represents the happiness of

whole society. Therefore, maximizing utility summation

of all agents is a reasonable decision making process in

the sense of social benefits.

Equation (2) indicates the number of agents assigned

to each task. The number of agents assigned to given

task-j is represented by j-th column sum of decision

variable matrix x . A cooperative task is hardly

constrained, so that, to perform it, at least min jn agents

required at the same time, and the number of agents for a

task cannot exceed max jn . In case of the planner assigning

none of agent task-j, the column sum of decision matrix

becomes zero. If there is no synergetic effect on utility

function, min jn would be absolutely more preferred to

max jn . This paper concentrates on non-synergetic case

only, so (2) can be shorten as,

min or 0 forjij

i

x n j


  (5)

Each agent is expected to perform iL tasks at most for

one sortie, as (3). It is a rough assumption to simplify the

assignment problem. In real field, an agent’s capability is

correlated with fuel amount, fuel consumption rate, flight

distance and so on.

The assignment is said to be ideally completed, if there

is no more agents left to assign, or no more task needs to

be allocated. Unfortunately, there could be some unideal

secneraio from the beginning; Even though there are

usable agents, sometimes it is not enough to perform

leftover tasks. Thus a complete condition for the

assignment is expressed as,

min minmin{ , , }ij j i poor

j i j i

x N n L N
   

  A (6)

max()poor q i
q i

N n L


   for min,{ }q jn n (7)

where min j
j
n

 is the required number of agents to

perform the whole tasks, i
i
L

 is the number of

available assignments of all agents, and poorN is the

number of possible assignments for the unideal case. It is

the maximum sum of min jn , while being less or equals to

the second candidate of (6).

B. Utility Function Scheme

A utility is function, mapping consumption of product

or service to the happiness of the consuming subject. The

utility theorem says that the utility is a monotonically

increasing positive valued function as,

: / 0U X R U X    (8)

where X is the product or service to be consumed, and

U is the utility function .

As the utility is positive real valued function, there is

no trivial action that causes unhappiness while consuming

it. Besides the monotonically increasing property of the

utility says that one would never get satisfied until it

consumes every resource, which is nature of a homo-

economicus.

The expected utility from consuming one more

resource is called as the marginal utility which is

mathematically defined as,

{ }
| | 1[] max -i n i

i

p j p
ij i n pu b U U

  (9)

where iju is the maximum marginal utility, ib is agent-i’s

task bundle list, ip is agent-i’s ordered path list, iU p is

total utility expected from given paths and n is an

operator that inserts the second list right after the n-th

element of the first list.

Provided that the marginal utility is monotonically

increasing and all agents show the same utilities on a

resource, then an agent is unwilling to share the resource

with the others. It is because that the more resource it

obtains, the more marginal gain is increased, like a

gamble addict. For task allocation, such selfish agents

will cause serious task concentration, which is unfamiliar

with common sense. Therefore, to fairly protect the task

assignment equilibrium, diminishing marginal gain

(DMG) property is needed.

DMG is also similar to the sub-modularity set function,

which is defined for a set function that the sum of

outcome of given function from intersection and union of

set X and set Y is always smaller than the sum of

outcome of set X and set Y , for given arbitrary sets. The

difference between DMG and the sub-modularity is that

DMG is defined for ordered list, path, but the sub-

modularity is for unordered set. As long as the score

scheme satisfies the DMG property, the agents will fairly

share the tasks. Mathematically, DMG is expressed as

follows,

[] []ij i ij i endu b u b b  (10)

Equation (10) means that the marginal utility gained by

inserting task-j on bundle ib is always bigger than the

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

93©2015 Engineering and Technology Publishing

marginal utility gained by inserting task-j on bundle

endib b .

Ref. [6] showed that next time discounting scheme

insures DMG property of scoring scheme, by triangle

inequality of given path. The time discounting utility

scheme is,

0(()-)j
J TOC p tp

j j
j

U u  (11)

() () ()
() () ()

j j d j

s j w j d j

TOC p TOE p p
T p p p


 

 
  

 (12)

where ju is the static utility,  is real number between

zero and one which exponentially discounts the utility,

TOC is the time of completion, p is path list of the fleet,

and 0t is the time origin of task. The TOC is the sum of

time of execution, TOE, and duration time τd of task-j,

and the TOE of p-th target task of agent-i is sum of

reaching time, Ts, on that task and waiting time interval τw,

for the other agents. All time variables are determined by

the path of entire fleet, so that, the total utility regarding

to task-j is function of the path of fleet. Each task is

weighted by static utility along the priority of it. The

static utility should be a nonnegative value, and the utility

is discounted exponentially as the TOC increases.

III. GROUP BUYING ALGORITHM

A. Centralized Group Buying Algorithm (CGBA)

The cooperative multiple task assignment problem

with hardly constrained order is harder problem than a

multiple task assignment problem that is handled by other

researches, and until now a complete enumeration survey

is the only way to find the global optimal solution,

However, its calculation time increases exponentially

depending on the problem size. It is because that it is

impossible to transform a target problem into a multi-

dimensional multiple knapsack choice problem (MMKP),

as like in RHTA or petal algorithm did in [6]-[8]. Hence a

suboptimal algorithm is practically useful.

This article proposes such a greedy heuristic algorithm,

named as group buying algorithm (GBA). Group buying

is also called as collective buying or group purchasing. It

is originated from Chinese tuángòu, and now many online

group-buying web servers exist. A centralized group

buying algorithm (CGBA) is depicted in the algorithm 1.

In the CGBA, each agent sequentially collects a task in

greedy. It is similar to sequential greedy algorithm (SGA)

of Choi [8]. Along the algorithm, it results in Nmin task-

agent pairs. When the ranking flag, Frank, is true, it sorts a

fake marginal utility ˆ
iju for each task-j in descending

order, to find out the nmin,j-th best task-agent pair. From

here, this paper will just say the fake marginal utility as

the marginal utility, and it is defined as,

 { } p
| | 1ˆ [] max i n i

i

p j
ij i n pu b U U

   (13)

 p
(p)

p p
p

i oi i

i i
i

n TOC tpU u  
% (14)

where iU p is the expected utility by agent-i , when it

follows its path, ip . The agents calculate the marginal

utility ˆ
iju as if it can perform the task-j right after it

reaches the task, without waiting the other agents. That is,

the agent considers itself as a critical agent for the task-j.

On the other hand, for the other tasks in its path list, it

just calculates the expected utility with the previous

assignment’s waiting time. For these reasons, this

marginal utility is not the actual marginal utility, but it is

the best way of prediction, as the actual utility is function

of the path of all fleet, not only a single agent. For

instance, Consider that there are an agent with a path list

of {1 3 4}. Although, the marginal utility of the agent for

task-j is expected when the task is performed right after

task 3, namely, when the agent has the path list of {1 3 j

4}, the task-j might not be assigned by others, and the

expected utility for task 4 might changes because of task j.

Thus, here at first, the algorithm gives the fake marginal

utility, which could be gained when it is actually critical

agent, and the new assignment doesn’t affect the later

tasks in path list. To amend this rough expectation, the

waiting time is recalculated with the actual assignment,

later.

By setting the static utility of any task-j as proportional

to nmin,j, it gives an incentive on cooperative tasks which

is suitable to common sense; If several men works on a

cooperative job, the job should be more profitable than

any non-cooperative jobs in option. In addition to that,

giving an incentive on a task with big nmin,j, results in a

higher priority on the task, so that, the algorithm can

avoid a local best strategy. For example, consider that

there are 4 tasks and 3 agents, which are capable of three

tasks each. The tasks require nmin,j agents, respectively,

where it is {2 2 2 3}. Therefore, the optimal number of

task-agent pair is 9, when all agents involve in task 4, and

share task 1 to 3 with proper combination. However, If

the algorithm sequentially assign two agents to the task 1,

2 and 3, the remaining agent cannot proceed the task 4

alone, as the task require two agents to do. Thus, giving

incentive to the task requiring many agents can hinder the

tasks from being assigned to improper agents.

If regarding path of the nmin,j agents, which has larger

marginal utility than the other, are expected to suffer

from cross deployment, their marginal utility is

recalculated with the new path constraints, p , on the line

11. The cross deployment will be handled on next section.

When all cross deployment paths are resolved, this

procedure finds the task, *
nj , that gives the nmin,j-th best

marginal utility among the whole task set, and

corresponding agents are *
ni . During the next nmin,j

loops,

*
ni agents get assigned to the task *

nj , by adding this task

to their bundle. If an agent is exhausted, the agent is

removed from agent list I . If a task is perfectly assigned,

the algorithm gets rid of it from task list J . Then, it

updates waiting time, w , of all agents on each tasks in

their path lists, and the marginal utility is updated as if

the agent-i is critical agent to the task-j, same as line 4.

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

94©2015 Engineering and Technology Publishing

Algorithm 1. Centralized Group Buying Algorithm

 1:  { },i ib p    , 0,i i I   

 2: min minj jn n  j J 

 3: min min
1 1

min{ , , }
u tN N

i j poor
i j

N L n N
 

  

 4:
(1)ˆ ˆ ({ }) (,)ijiju u i j I J    

 5: Frank = true

 6: for n = 1 to minN do

 7: if Frank = true

 8: for nj J

 9: min, ˆ(,) rank ()jn n
j j ijji s u

 10: if
()

j

n
ip p p% U is cross deployed

 11:
()

1(,)n n
ij ij niu u b p i I   % %

 12: go to 8
 13: end if

 13: end for

 14:
* arg max minn j j i jj s n jj J i i   

 15: *
*

n
n ji i

 16: Frank = false

 17: end if

 18: *
* *

min()
n

n n ji i n

 19: *min nj
n = *min 1

nj
n 

 20: * * 1
n ni i  

 21: * *
*

end { }
n n

ni ib b j 

 22: end if

 23: if *
n

ii L  then

 24:
*

1 \{ }n n nI I i 

 25: *

(1)

,
0

n

n

i j
u j J   

 26: else

 27: 1n nI I 

 28: end if

 29: if *
'

min 0
nj

n  then

 30:
*

1 \{ }n n nJ J j 

 31: (,) ()w Ti j U p  1 1(,) n ni j I J   

 32:
(1) ()

1 1ˆ ˆ [] (,)n n
ij n nij iu u b i j I J

    

 33: Frank = true
 34: else

 35: 1n nJ J 

 36: end if

 37: end for

B. Cross Deployment Resolving.

If path lists of some agents that involve in mission are

mutually dependent in order, then it is defined as cross

deployment. For example, consider that agent #1 has path

list {1 2 3}, and agent #2 has path list {3 2}. To do task 3,

agent #1 should perform task 2 first. On the other hand, in

the point of view of agent #2 to perform task 2, it has to

perform task 3 first. This conflict can appear indirectly.

Consider that the case agent #1 has path {1 2}, agent #2

has path {2 3}, and that of agent #3 is {3 1}. In this case,

to perform task 3, agent 1 and agent 2 should perform

task 1 and task 2. But for agent 3 to do task 3, it has to do

task 3 first.

To check whether cross deployment exists or not, this

work introduces a checking process in algorithm 2, which

uses before & after task list. Along the path list of every

agent, it builds and updates the before and after list of

each task. When it updates some task A to before list of

task B, it also updates task A to the before list of all tasks

that are in the after list of task B. It is in the same manner

for updating task A to after list of task B. If a task exists

in both of before & after lists of a task, it means that there

is a cross deployed assignment.

Algorithm 2. Checking Cross Deployment

 1: function

Input ip i I  , paths of all agent.

Input { }B j j J  , before task lists of all tasks

Input { }A j j J  , After task lists of all tasks

 2: for i = 1 to ()n I

 3: for z = 1 to ()in p

 4: (z)this ij p

 5: (1: z 1)b iT p  , ()bp n T

 6: (z 1: ())a i iT p n p  , ()aq n T

 7: if . . () { }a thisq s t T q B j   for q q 

or . . () { }b thisp s t T p A j   for p p 

 8: return true.

 9: end if

 10: if () { }b thisT p B j

 11: end{ } ()this bB j T p

 12: if { } { }bT p B a for { }thisa A j 

 13: end{ } ()bB a T p

 14: end if

 15: end if

 16: same manner for after list (line 10 to 15)
 17: end for

 18: end for

On the line 10 of algorithm 1, this checking algorithm

is used to check the cross deployment. Also on the line 11

of algorithm 1, the function ()(,)n
ij iu b p% % calculate the

marginal utility, that doesn’t violate the cross deployment

constraints. In the line 11 of algorithm 1, the path

candidate p% is path with the previous assignment and the

candidate of critical agent of this assignment. As CGBA

searches the nminj th best marginal utility, this

recalculation changes the marginal utility and

corresponding path of the agents from the best to nminj –1

- th best candidate for the task-j.

TABLE I. SIMULATION SCENARIO

CASE 1

AGENT 5 – TASK 4.

Required agents of TASK to operate {2 3 2 2}.
Each agent can take 3 tasks, respectively, throughout CASE 1 and

2.

CASE 2

100 times Monte-Carlo simulations

AGENT 3 – TASK 1 to 100 varying

Positions of tasks and agent, static utility are random.
Required number are random between 1 to 3.

CASE 3

Massive assignment scenarios,

AGENT 10 - TASK 20

Each agent can take 5 tasks, respectively. Other specific numbers
are omitted.

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

95©2015 Engineering and Technology Publishing

IV. SIMULATIONS

A. Simulation Scenarios

To show the applicability and the performance of

proposed CGBA, authors simulated the task assignment

scenarios in Table I. The simulation is done on a dual

core 2.1 GHz CPU with Ubuntu 12.04, and MATLAB

2011.

B. Simulation Results

Figure 1. Case 1 (up) agent path (down) agent assignment time widow

The case 1 simulation is moderately small size

problem. As the five agents can take 3 tasks, respectively,

and the four tasks need 9 task-agent pairs, all the tasks are

performable with this fleet. In Fig. 1 (up), it shows the

paths of all agents. The orange polygons are obstacles. In

Fig. 1 (down), the assignment result is depicted over the

time window, where y-axis is for Task ID. The boxes in

the graph mean that the agents are doing the assigned

tasks, and the horizontal lines between boxes represent

waiting time of each agent.

In the case 2, a Monte-Carlo simulation is done, with

randomly chosen 3 agents and tasks of varying number.

In Fig. 2, as the number of task increases, elapsed time

increases linearly, and the performance seemed to be

saturated. As the multiple cooperative task assignment is

NP-hard class problem, it will suffer the curse of

dimension. However, CGBA gives a feasible decision in

polynomial time. The performance saturation is a general

phenomenon, because the agent number is fixed, while

the number of task is increased. Thus at a glance, the

service provider have to balance the agents number with

respect to the number of tasks, to get an efficient mission

result.

Figure 2. Case 2, Monte Carlo Simulation, (up) performance
saturation, (down) polynomial time solution.

Figure 3. Case 1 (up) agent path (down) agent assignment time widow.

The case 3 is a massive task assignment problem. It

contains 20 tasks, and 10 agents. The assignment result is

shown in Fig. 3. This scenario is solved within 3.2 second,

although the problem size is such big. As the CGBA

gives solution within polynomial time, it is very useful

for the practical situations as well.

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

96©2015 Engineering and Technology Publishing

V. CONCLUSION

This paper presented a centralized suboptimal task

assignment algorithm for multiple- cooperative task

assignment problem. The suggested algorithm resolves

the cross deployment issues with before and after task

lists, and successively allocates the agents to a proper

task. To be more precise in calculating the marginal

utility, it updates the waiting time for a given task in each

loop. This algorithm can be used for other applications;

robotic slung-load transport, UAV air to air combat

algorithm, and so on. The task assignment simulation is

done to check the elapsed time and utility performance of

CGBA.

ACKNOWLEDGMENT

This research was supported by Defense Acquisition

Program Administration and Agency for Defense

Development under the contract UE124026JD.

REFERENCES

[1] S. Y. Byeon, W. S. Lee, and H. C. Bang, “Task assignment for

forest fire suppression by multiple UAVs,” Journal of Mechanics
Engineering and Automation, pp. 65-70, March 2013

[2] G. H. Moon, C. H. Lee, D. W. Yoo, and M. J. Tahk, “Con-sensus

based bundle algorithm for air to air weapon assignment,”
presented at the JSASS Western Branch Conference 2012, Fukuka,

Japan, Nov 2012.
[3] G. H. Moon, C. H. Lee, D. W. Yoo and M. J. Tahk, “Decetraized

cooperative control algorithm for JSEAD mission,” presented at

the 2012 Asia-Pacific International Symposium on Aerospace
Technology, Jeju, Korea, Nov 2012.

[4] A. K. Whitten, “Decentralized planning for autonomous agents
cooperating in complex missions,” M.S. Thesis, Massachusetts

Institute of Technology, Massachusetts, United States of America,

2010.
[5] H. L. Choi, A. K. Whitten, and J. P. How, “Decentralized task

allocation for heterogeneous teams with cooperation constraints,”
presented at the 2010 American Control Conference, Marriott

Waterfront, Baltimore, MD, USA, 2010.

[6] H. L. Choi, L. Brunet, and J. P. How, “Consensus-based
decentralized auction for robust task allocation,” IEEE Trans. on

Robotics, vol. 25, no. 4, pp. 912-925, 2009.
[7] J. Bellingham, M. Tillerson, A. Richard, and J. P. How, “Multi-

task allocation and path planning for cooperative UAVs,” in

Cooperative Control: Models, Applications and Algorithms,
Boston, MA: Kluwer, 2003, pp. 23-41.

[8] M. Alighanbari, “Robust and decentralized task assignment
algorithm for UAVs,” Ph.D. dissertation, Massachusetts Institute

of Technology, Massachusetts, United State of America. 2007.

Gun-Hee Moon was born in Seoul, Korea, in
1990. He received the B.S. degree in

aerospace engineering from the Inha

University, Incheon, Korea, in 2012. He is
currently pursuing the M.S. degree in

aerospace engineering at Korea Advanced
Institute of Science and Technology, Daejeon,

Korea. His current research interests include

decision making of multi agents for
cooperative tasks and, guidance and control of

unmanned system.

Dong-Wan Yoo was born in the Seoul, Korea

in 1984 and received B.S. degree from
Pennsylvania State University, University

Park PA, USA and the M.S. degree from
Korea Advanced Institute of Science and

Technology, Daejeon, Korea, all in aerospace

engineering. He is currently a Ph.D Student of
Aerospace Engineering at Korea Advanced

Institute of Science and Technology, Daejeon,
Korea. His research interests includes flight

dynamics and control.

Byung-Yoon Lee was born in the Seoul,

Korea in 1984 and received B.S. degree in
electronic and computer engineering from

Kyunghee University, Gyonggi-do, Korea, in

2010. He is presently a Ph.D. Student of
Aerospace Engineering at Korea Advanced

Institute of Science and Technology, Daejeon,
Korea. His research interests include flight

control system design and cooperative control

system design of multiple UAVs.

Hae-In Lee was born in Busan, Korea in 1991

and received B.S degree in aerospace

engineering from Korea Advanced Institute of
Science and Technology, Daejeon, Korea, in

2013. She is presently a Master’s Student of
aerospace engineering at Korea Advanced

Institute of Science and Technology, Daejeon,

Korea. Her research interests include flight
control design and guidance.

Min-Jea Tahk was born in South Korea in

1954 and received the Ph. D. degrees in
aerospace engineering from the University of

Texas at Austin in 1986. He is currently a
Professor of the department of aerospace

engineering, Korea Advanced Institute of

Science and Technology, Daejeon, Korea. His
research areas include flight control,

parameter optimization, modeling and
simulation.

Journal of Automation and Control Engineering Vol. 3, No. 2, April 2015

97©2015 Engineering and Technology Publishing

