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Abstract—This paper is about a centralized group buying 

task assignment algorithm (CGBA) for cooperative multiple 

task assignment, which are non-synergetic and hardly 

constrained on the minimum required number of agents to 

perform it. CGBA utilize greedy market strategy for each 

agent’s path decision, and gives an incentive to the task with 

a larger required number of agents. In the multi-

cooperative task allocation, there is a distinguish problem 

that would cause infinite loop in mission, which is defined as 

cross deployment. To resolve this, a checking algorithm 

using before & after task list is also proposed. Numerical 

experiment confirms that the algorithm gives a suboptimal 

solution in polynomial time.  

 

Index Terms—group buying, multi-agents, swarm robots, 

UAV task assignment 

 

I. INTRODUCTION 

A. Mult-Allocation Cooperative Task  

In the future, it is expected that swarm robots would be 

employed for a variety of missions that are incapable of 

being performed by a single agent. For instance, multiple 

UAVs are capable of transporting a heavy load in slung 

load style. The slung load is a freight delivery style, 

linking vehicle with cargo by external cables. One UAV 

cannot shift a heavy cargo, that exceed its’ thrust capacity, 

alone. However a couple of UAVs, which linked with a 

package, may get a chance to lift the object. 

In order to efficiently utilize the multi-agents system, 

several researches related to task assignment have been 

studied. Byeon used the consensus based bundle 

algorithm (CBBA) for the forest fire suppression mission 

[1]. The author utilized CBBA on the multiple air to air 

weapon assignment, and suppression of enemy air 

defense mission [2], [3]. Whitten extended the CBBA to 

handle coupled-constraints [4]. Choi [5] called such a 

tasks needed to be done by dual agent as duo task (DT), 

which is distinguished from single task (ST). He 

categorized the duo task into required duo task (RDT) 

and preferred duo task (PDT).  

This paper deals with a class of task similar to RDT. 

However, this research is not only about the dual agent 

problem, but also about a task of hardly constrained on 

minimum required number of agent. Until all of the 
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agents gather, which are assigned to the same task, they 

cannot start the mission. Because of it, there can be a 

cross deployment problem in multiple cooperative task 

assignment, and it will be explained more detail in the 

next chapter. 

B. Background 

Group buying (GB) is also called as group purchasing 

or collective buying. It is known to be originated from 

China, where “Tuángòu” was executed to get a discount 

price from retailer when a group of purchasers were 

willing to buy same item. As individual customers cannot 

freely make a deal with local retailers, a group of 

customers with same needs are organized to fulfill the 

minimum number of orders. 

By the GB, individual customers as well as retailers 

get satisfied. In the customer’s point of view, as 

commission charges are vanished, the retailer offers 

product in a discounted price. In the retailer’s point of 

view, as the needs on a product are increased as much as 

the customer wants, their total incomes increase.  

This article is inspired from the benefits of the GB, 

utilizing it for task assignment for cooperative task that 

multiple allocation process is required. Centralized group 

buying algorithm (CGBA) is also based on sequential 

greedy algorithm (SGA) by Choi [6]. The SGA 

sequentially finds out a feasible suboptimal solution in 

greedy way, however, it is restricted only for multi-task 

problem. Thus CGBA extends SGA to solve given 

multiple cooperative task allocation problem. 

Rest of the paper is organized as follows. In chapter II 

the formal cooperative multi-task assignment problem is 

defined. The details of CGBA are explained on chapter 

III. In chapter IV, this work verifies the CGBA’s 

applicability with simulations, and finishes with 

conclusion in chapter V. 

II. MULTIPLE COOPERATIVE TASK ASSIGNMENT  

A. Problem Statement 

A cooperative task assignment is decision making 

problem that matches uN -agents with tN -tasks as many 

as possible. By allocating agents to proper tasks, society 

can gain utilities which measure its degree of satisfaction. 

Mathematically, the problem is formulated as an optimal 

decision problem that maximize utility summation of the 

entire fleet as,  
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where iju is the utility earned by of agent-i performing 

task-j along its’ path ip , and ijx is a decision variable 

indicating agent-i’s assignment to task-j. If agent-i is 

allocated to task-j, ijx  is one, otherwise it is zero. The 

index i represents the ID number of each agent, and index 

j is the ID of the task. 

The purpose of this optimization is finding fleet’s path 

plan P  that maximizes utility summation. The utility 

summation of whole agent represents the happiness of 

whole society. Therefore, maximizing utility summation 

of all agents is a reasonable decision making process in 

the sense of social benefits.  

Equation (2) indicates the number of agents assigned 

to each task. The number of agents assigned to given 

task-j is represented by j-th column sum of decision 

variable matrix x . A cooperative task is hardly 

constrained, so that, to perform it, at least min jn  agents 

required at the same time, and the number of agents for a 

task cannot exceed max jn . In case of the planner assigning 

none of agent task-j, the column sum of decision matrix 

becomes zero. If there is no synergetic effect on utility 

function, min jn  would be absolutely more preferred to 

max jn . This paper concentrates on non-synergetic case 

only, so (2) can be shorten as, 

min or 0 forjij

i

x n j


                 (5) 

Each agent is expected to perform iL tasks at most for 

one sortie, as (3). It is a rough assumption to simplify the 

assignment problem. In real field, an agent’s capability is 

correlated with fuel amount, fuel consumption rate, flight 

distance and so on.  

The assignment is said to be ideally completed, if there 

is no more agents left to assign, or no more task needs to 

be allocated. Unfortunately, there could be some unideal 

secneraio from the beginning; Even though there are 

usable agents, sometimes it is not enough to perform 

leftover tasks. Thus a complete condition for the 

assignment is expressed as,  

min minmin{ , , }ij j i poor

j i j i
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where min j
j
n

 is the required number of agents to 

perform the whole tasks, i
i
L

  is the number of 

available assignments of all agents, and poorN is the 

number of possible assignments for the unideal case. It is 

the maximum sum of min jn , while being less or equals to 

the second candidate of (6). 

B. Utility Function Scheme 

A utility is function, mapping consumption of product 

or service to the happiness of the consuming subject. The 

utility theorem says that the utility is a monotonically 

increasing positive valued function as,  

: / 0U X R U X                     (8) 

where X is the product or service to be consumed, and 

U is the utility function . 

As the utility is positive real valued function, there is 

no trivial action that causes unhappiness while consuming 

it. Besides the monotonically increasing property of the 

utility says that one would never get satisfied until it 

consumes every resource, which is nature of a homo-

economicus.  

The expected utility from consuming one more 

resource is called as the marginal utility which is 

mathematically defined as, 

{ }
| | 1[ ] max -i n i

i

p j p
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where iju is the maximum marginal utility, ib is agent-i’s 

task bundle list, ip is agent-i’s ordered path list, iU p is 

total utility expected from given paths and n is an 

operator that inserts the second list right after the n-th 

element of the first list. 

Provided that the marginal utility is monotonically 

increasing and all agents show the same utilities on a 

resource, then an agent is unwilling to share the resource 

with the others. It is because that the more resource it 

obtains, the more marginal gain is increased, like a 

gamble addict. For task allocation, such selfish agents 

will cause serious task concentration, which is unfamiliar 

with common sense. Therefore, to fairly protect the task 

assignment equilibrium, diminishing marginal gain 

(DMG) property is needed.  

DMG is also similar to the sub-modularity set function, 

which is defined for a set function that the sum of 

outcome of given function from intersection and union of 

set X and set Y  is always smaller than the sum of 

outcome of set X and set Y , for given arbitrary sets. The 

difference between DMG and the sub-modularity is that 

DMG is defined for ordered list, path, but the sub-

modularity is for unordered set. As long as the score 

scheme satisfies the DMG property, the agents will fairly 

share the tasks.  Mathematically, DMG is expressed as 

follows,  

[ ] [ ]ij i ij i endu b u b b                        (10) 

Equation (10) means that the marginal utility gained by 

inserting task-j on bundle ib is always bigger than the 
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marginal utility gained by inserting task-j on bundle 

endib b .  

Ref. [6] showed that next time discounting scheme 

insures DMG property of scoring scheme, by triangle 

inequality of given path. The time discounting utility 

scheme is, 

0( ( )- )j
J TOC p tp

j j
j
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where ju is the static utility,   is real number between 

zero and one which exponentially discounts the utility, 

TOC is the time of completion, p is path list of the fleet, 

and 0t is the time origin of task. The TOC is the sum of 

time of execution, TOE, and duration time τd of task-j, 

and the TOE of p-th target task of agent-i is sum of 

reaching time, Ts, on that task and waiting time interval τw, 

for the other agents. All time variables are determined by 

the path of entire fleet, so that, the total utility regarding 

to task-j is function of the path of fleet. Each task is 

weighted by static utility along the priority of it. The 

static utility should be a nonnegative value, and the utility 

is discounted exponentially as the TOC increases.  

III. GROUP BUYING ALGORITHM 

A. Centralized Group Buying Algorithm (CGBA) 

The cooperative multiple task assignment problem 

with hardly constrained order is harder problem than a 

multiple task assignment problem that is handled by other 

researches, and until now a complete enumeration survey 

is the only way to find the global optimal solution, 

However, its calculation time increases exponentially 

depending on the problem size. It is because that it is 

impossible to transform a target problem into a multi-

dimensional multiple knapsack choice problem (MMKP), 

as like in RHTA or petal algorithm did in [6]-[8]. Hence a 

suboptimal algorithm is practically useful.  

This article proposes such a greedy heuristic algorithm, 

named as group buying algorithm (GBA). Group buying 

is also called as collective buying or group purchasing. It 

is originated from Chinese tuángòu, and now many online 

group-buying web servers exist. A centralized group 

buying algorithm (CGBA) is depicted in the algorithm 1. 

In the CGBA, each agent sequentially collects a task in 

greedy. It is similar to sequential greedy algorithm (SGA) 

of Choi [8]. Along the algorithm, it results in Nmin task-

agent pairs. When the ranking flag, Frank, is true, it sorts a 

fake marginal utility ˆ
iju  for each task-j in descending 

order, to find out the nmin,j-th best task-agent pair. From 

here, this paper will just say the fake marginal utility as 

the marginal utility, and it is defined as,  

 { } p
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i

p j
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where iU p  is the expected utility by agent-i , when it 

follows its path, ip . The agents calculate the marginal 

utility ˆ
iju  as if it can perform the task-j right after it 

reaches the task, without waiting the other agents. That is, 

the agent considers itself as a critical agent for the task-j. 

On the other hand, for the other tasks in its path list, it 

just calculates the expected utility with the previous 

assignment’s waiting time. For these reasons, this 

marginal utility is not the actual marginal utility, but it is 

the best way of prediction, as the actual utility is function 

of the path of all fleet, not only a single agent. For 

instance, Consider that there are an agent with a path list 

of {1 3 4}. Although, the marginal utility of the agent for 

task-j is expected when the task is performed right after 

task 3, namely, when the agent has the path list of {1 3 j 

4}, the task-j might not be assigned by others, and the 

expected utility for task 4 might changes because of task j. 

Thus, here at first, the algorithm gives the fake marginal 

utility, which could be gained when it is actually critical 

agent, and the new assignment doesn’t affect the later 

tasks in path list. To amend this rough expectation, the 

waiting time is recalculated with the actual assignment, 

later. 

By setting the static utility of any task-j as proportional 

to nmin,j, it gives an incentive on cooperative tasks which 

is suitable to common sense; If several men works on a 

cooperative job, the job should be more profitable than 

any non-cooperative jobs in option. In addition to that, 

giving an incentive on a task with big nmin,j, results in a 

higher priority on the task, so that, the algorithm can 

avoid a local best strategy. For example, consider that 

there are 4 tasks and 3 agents, which are capable of three 

tasks each. The tasks require nmin,j agents, respectively, 

where it is {2 2 2 3}. Therefore, the optimal number of 

task-agent pair is 9, when all agents involve in task 4, and 

share task 1 to 3 with proper combination. However, If 

the algorithm sequentially assign two agents to the task 1, 

2 and 3, the remaining agent cannot proceed the task 4 

alone, as the task require two agents to do. Thus, giving 

incentive to the task requiring many agents can hinder the 

tasks from being assigned to improper agents.  

If regarding path of the nmin,j  agents, which has larger 

marginal utility than the other, are expected to suffer 

from cross deployment, their marginal utility is 

recalculated with the new path constraints, p , on the line 

11. The cross deployment will be handled on next section.  

When all cross deployment paths are resolved, this 

procedure finds the task, *
nj , that gives the nmin,j-th best 

marginal utility among the whole task set, and 

corresponding agents are *
ni . During the next nmin,j 

 
loops, 

*
ni  agents get assigned to the task *

nj , by adding this task 

to their bundle. If an agent is exhausted, the agent is 

removed from agent list I . If a task is perfectly assigned, 

the algorithm gets rid of it from task list J . Then, it 

updates waiting time, w , of all agents on each tasks in 

their path lists, and the marginal utility is updated as if 

the agent-i is critical agent to the task-j, same as line 4. 
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Algorithm 1.   Centralized Group Buying Algorithm  

 1:   { },i ib p    , 0,i i I     

 2:  min minj jn n     j J   

 3:  min min
1 1

min{ , , }
u tN N

i j poor
i j

N L n N
 

    

 4:  
(1)ˆ ˆ ({ }) ( , )ijiju u i j I J      

 5:  Frank = true 

 6:  for n = 1 to minN do 

 7:   if Frank = true 

 8:   for nj J  

 9:   min, ˆ( , ) rank ( )jn n
j j ijji s u  

 10:   if 
( )

j

n
ip p p% U  is cross deployed 

 11:   
( )

1( , )n n
ij ij niu u b p i I   % %  

 12:   go to 8 
 13:   end if 

 13:   end for 

 14:   
* arg max minn j j i jj s  n jj J i i     

 15:   *
*

n
n ji i  

 16:   Frank = false 

 17:  end if 

 18: *
* *

min( )
n

n n ji i n  

 19:   *min nj
n = *min 1

nj
n   

 20:   * * 1
n ni i    

 21:   * *
*

end { }
n n

ni ib b j        

 22:   end if 

 23:   if *
n

ii L  then 

 24:   
*

1 \{ }n n nI I i   

 25:   *

( 1)

,
0

n

n

i j
u j J     

 26:   else  

 27:   1n nI I   

 28:   end if 

 29:   if *
'

min 0
nj

n  then 

 30:   
*

1 \{ }n n nJ J j   

 31:   ( , ) ( )w Ti j U p  1 1( , ) n ni j I J     

 32:   
( 1) ( )

1 1ˆ ˆ [ ] ( , )n n
ij n nij iu u b i j I J

      

 33:    Frank = true 
 34:   else  

 35:    1n nJ J   

 36:   end if 

 37:  end for 

B. Cross Deployment Resolving.  

If path lists of some agents that involve in mission are 

mutually dependent in order, then it is defined as cross 

deployment. For example, consider that agent #1 has path 

list {1 2 3}, and agent #2 has path list {3 2}. To do task 3, 

agent #1 should perform task 2 first. On the other hand, in 

the point of view of agent #2 to perform task 2, it has to 

perform task 3 first. This conflict can appear indirectly. 

Consider that the case agent #1 has path {1 2}, agent #2 

has path {2 3}, and that of agent #3 is {3 1}. In this case, 

to perform task 3, agent 1 and agent 2 should perform 

task 1 and task 2. But for agent 3 to do task 3, it has to do 

task 3 first.  

To check whether cross deployment exists or not, this 

work introduces a checking process in algorithm 2, which 

uses before & after task list. Along the path list of every 

agent, it builds and updates the before and after list of 

each task. When it updates some task A to before list of 

task B, it also updates task A to the before list of all tasks 

that are in the after list of task B. It is in the same manner 

for updating task A to after list of task B. If a task exists 

in both of before & after lists of a task, it means that there 

is a cross deployed assignment. 

Algorithm 2.  Checking Cross Deployment  

 1:  function  

Input ip i I  , paths of all agent.  

Input { }B j j J  , before task lists of all tasks 

Input { }A j j J  , After task lists of all tasks 

 2:  for i = 1 to ( )n I  

 3:  for z = 1 to ( )in p  

 4:  (z)this ij p  

 5:  (1: z 1)b iT p  ,  ( )bp n T  

 6:  (z 1: ( ))a i iT p n p  , ( )aq n T  

 7:  if . . ( ) { }a thisq s t T q B j   for q q    

or . . ( ) { }b thisp s t T p A j   for p p   

 8:   return true. 

 9:   end if 

 10:   if ( ) { }b thisT p B j  

 11:   end{ } ( )this bB j T p  

 12:   if { } { }bT p B a for { }thisa A j    

 13:   end{ } ( )bB a T p  

 14:   end if 

 15:   end if 

 16:   same manner for after list (line 10 to 15) 
 17:    end for 

 18:  end for 

 

On the line 10 of algorithm 1, this checking algorithm 

is used to check the cross deployment. Also on the line 11 

of algorithm 1, the function ( )( , )n
ij iu b p% % calculate the 

marginal utility, that doesn’t violate the cross deployment 

constraints. In the line 11 of algorithm 1, the path 

candidate p% is path with the previous assignment and the 

candidate of critical agent of this assignment. As CGBA 

searches the nminj th best marginal utility, this 

recalculation changes the marginal utility and 

corresponding path of the agents from the best to nminj –1 

- th best candidate for the task-j.  

TABLE I.  SIMULATION SCENARIO 

CASE 1 

AGENT 5 – TASK 4. 

Required agents of TASK to operate {2 3 2 2}. 
Each agent can take 3 tasks, respectively, throughout CASE 1 and 

2. 

CASE 2 

100 times Monte-Carlo simulations 

AGENT 3 – TASK 1 to 100 varying 

Positions of tasks and agent, static utility are random.  
Required number are random between 1 to 3. 

CASE 3 

Massive assignment scenarios, 

AGENT 10  - TASK 20 

Each agent can take 5 tasks, respectively. Other specific numbers 
are omitted. 
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IV. SIMULATIONS 

A. Simulation Scenarios   

To show the applicability and the performance of 

proposed CGBA, authors simulated the task assignment 

scenarios in Table I. The simulation is done on a dual 

core 2.1 GHz CPU with Ubuntu 12.04, and MATLAB 

2011. 

B. Simulation Results 

  

 

Figure 1.  Case 1 (up) agent path (down) agent assignment time widow 

The case 1 simulation is moderately small size 

problem. As the five agents can take 3 tasks, respectively, 

and the four tasks need 9 task-agent pairs, all the tasks are 

performable with this fleet. In Fig. 1 (up), it shows the 

paths of all agents. The orange polygons are obstacles. In 

Fig. 1 (down), the assignment result is depicted over the 

time window, where y-axis is for Task ID. The boxes in 

the graph mean that the agents are doing the assigned 

tasks, and the horizontal lines between boxes represent 

waiting time of each agent. 

In the case 2, a Monte-Carlo simulation is done, with 

randomly chosen 3 agents and tasks of varying number. 

In Fig. 2, as the number of task increases, elapsed time 

increases linearly, and the performance seemed to be 

saturated. As the multiple cooperative task assignment is 

NP-hard class problem, it will suffer the curse of 

dimension. However, CGBA gives a feasible decision in 

polynomial time. The performance saturation is a general 

phenomenon, because the agent number is fixed, while 

the number of task is increased. Thus at a glance, the 

service provider have to balance the agents number with 

respect to the number of tasks, to get an efficient mission 

result. 

 

 

Figure 2.  Case 2, Monte Carlo Simulation, (up) performance 
saturation, (down) polynomial time solution.  

 

 

Figure 3.  Case 1 (up) agent path (down) agent assignment time widow. 

The case 3 is a massive task assignment problem. It 

contains 20 tasks, and 10 agents. The assignment result is 

shown in Fig. 3. This scenario is solved within 3.2 second, 

although the problem size is such big. As the CGBA 

gives solution within polynomial time, it is very useful 

for the practical situations as well.  
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V. CONCLUSION 

This paper presented a centralized suboptimal task 

assignment algorithm for multiple- cooperative task 

assignment problem. The suggested algorithm resolves 

the cross deployment issues with before and after task 

lists, and successively allocates the agents to a proper 

task. To be more precise in calculating the marginal 

utility, it updates the waiting time for a given task in each 

loop. This algorithm can be used for other applications; 

robotic slung-load transport, UAV air to air combat 

algorithm, and so on. The task assignment simulation is 

done to check the elapsed time and utility performance of 

CGBA.  
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