
A VLSI Architecture for H.264/AVC Variable

Block Size Motion Estimation

Dam. Minh Tung and Tran. Le Thang Dong
Center of Electrical Engineering, Duy Tan University, Da Nang, Viet Nam

Email: minhtungdam@gmail.com, tranthangdong@duytan.edu.vn

Abstract—In this paper, we propose an efficient VLSI

architecture for variable block size motion estimation

(VBSME) in H.264/AVC to reduce the hardware cost and

latency. The proposed architecture adopts four modes (8x8,

8x16, 16x8 and 16x16 modes) instead of seven modes for

VBSME specified in H.264/AVC. Our architecture

significantly reduces the hardware size by reducing (1) the

registers and adders in each processing unit, (2) the

comparison elements, and (3) the registers used to store the

minimum SADs and motion vectors. The experimental

result shows that our proposed architecture reduces the

hardware size by 44.3% while it also increases the operation

clock frequency by 54.9% compared with the best-known

architecture. The proposed architecture satisfied the real-

time processing requirement of the massive data in high

resolution video applications.

Index Terms—H264/AVC, VBSME, motion estimation, 1-D

tree architecture, VLSI design, video codec

I. INTRODUCTION

Block matching algorithm (BMA) is a well-known

method for motion estimation widely used to reduce the

temporal redundancy between successive image frames in

digital video processing. For previous video compression

standards such as MPEG-2, a fixed- size BMA was mostly

used. In a typical BMA, each frame of a video sequence is

divided into a fixed number of non-overlapping square

blocks. For each block in the current frame, the best

matching block is searched in the previous frame under a

certain criterion. In most BMAs, the matching criterion

used to produce an error cost function is the sum of

absolute differences (SADs) between the 16x16

macroblocks (MBs). If x(i, j) and y(i, j) are the pixels of

the relevant current and candidate MBs, and m and n are

the coordinates of the motion vector (MV), the SAD is

then defined as:

15 15

0 0

(,) | (,) - (,) |
i j

SAD m n x i j y i m j n
 

  

A fixed 16x16 MB size is well suited for large areas of

consistent motion, but not suitable to accommodate the

different changes in object movement within a video

frame. Therefore, it may limit the performance of the

BMA for low bit rate video coding applications.

Manuscript received December 7, 2013; revised February 10, 2014.

H.264/AVC remedies this limitation by using variable

block size motion estimation (VBSME). The VBSME has

41 different sub-blocks of seven modes including 16x16,

16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 modes as shown in

Fig. 1.

Figure 1. Variable block sizes supported by H.264/AVC

Various VLSI architectures have been proposed for

VBSME implementation. Most of them are based on the

traditional full search algorithm because of its good

performance and regularity. However, full search

algorithm requires high computational cost. Therefore, it

is only effective when implemented as a dedicated

hardware. Several fast algorithms such as the three step

search, the new three step search, the diamond search,

and the hexagon-based search have been proposed for

improving motion estimation implementation. Some

other advanced algorithms such as the cross-diamond

search, the hardware-oriented modified diamond search

[1] and the line diamond parallel search (LDPS) [2] have

been proposed to provide better adaptability and

searching efficiency for tracking large motions. Among

these algorithms, LDPS algorithm [2] provides the better

objective quality and fast searching compared with others.

Furthermore, the algorithm is simple and suitable for

hardware implementation. Our proposed architecture is

based on one of the three widely used architectures: the

Propagate Partial SAD, the SAD tree and the Parallel

Sub-Tree. The SAD tree architecture is chosen due to its

highest performance among the three. In this paper, we

propose a new SAD tree architecture adopting four

modes instead of seven modes for VBSME. LDPS

algorithm is employed for motion estimation to achieve

low hardware cost and high processing speed.

This paper is organized as follows. In Section 2, the

related works are explained. In Section 3, the proposed

architecture is explained in detail. In Section 4,

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

51©2015 Engineering and Technology Publishing
doi: 10.12720/joace.3.1.51-55

mailto:minhtungdam@gmail.com
mailto:tranthangdong@duytan.edu.vn

experimental results are provided. Section 5 concludes

the paper.

II. RELATED WORK

A. LDPS Algorithm

The LDPS algorithm exploits the center-biased

characteristic of the real world video sequences. Fig. 2 is

used to explain the LDPS algorithm. There are two

patterns to search the matching point in LDPS. The first

is the small diamond search pattern (SDSP) used at the

beginning of a search as shown in Fig. 2(a). The second

pattern improves the search in the horizontal and vertical

direction as shown in Fig. 2(b) and (c). The LDPS

algorithm uses the small diamond search pattern to

consist of 5 points. The center point of SDSP is the center

of the search window and four neighboring points are on

the left, right, top and bottom of the center point as

described in [2]. The checking points of the SDSP are

examined one by one from the center to the outside. The

SDSP determines the direction of the search either

horizontal or vertical. The search continues until the

minimum SAD is found at the center point of SDSP. If

the minimum SAD is found at the four neighboring

points around the center point, three new points are added

along the chosen direction. Then, the search process is

iteratively performed on the new center point. Fig. 2(d)

shows the flow chart of the LDPS algorithm.

(a) The small diamond search pattern (SDSP)

(b) Vertical line search

(c) Horizontal line search

(d) Flow chart of the LDPS algorithm

Figure 2. The LDPS algorithm

B. Overview of VBSME Architecture

Since motion estimation (ME) is the most

computation-intensive part in video coding process,

various architectures have been proposed. For example, a

1-D and a 2-D ME architectures are proposed in [3] and

[4], respectively. However, these architectures only

support 16x16 mode. They are not suitable for

H.264/AVC. Another 1-D architecture [1] and a 2-D

architecture [5] are presented supporting the block modes

in H.264/AVC. Compared with the 1-D architecture, 2-D

architecture has the higher performance, but it occupies

larger area.

Recently, Huang [5] has shown that the three small

modes of VBSME such as 8x4, 4x8 and 4x4 can be ruled

out because of their insignificant contribution to the video

quality especially for high-resolution applications such as

HDTV. As a result, the architecture for the four-mode

VBSME can be simplified by reducing the computing

resources. The 2-D architecture with the mode reduction

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

52©2015 Engineering and Technology Publishing

is presented in [5]. In this paper, we focus on the

improvement of 1-D architecture by reducing the

hardware size and increasing the clock frequency.

Figure 3. The general VBSME architecture

Fig. 3 shows the general architecture to implement

seven modes VBSME in H.264/AVC. It needs 41

comparator elements (CEs) to compare 41 SAD values of

seven modes (1 16x16, 2 8x16, 2 16x8, 4 8x8, 8 4x8, 8

8x4 and 16 4x4). However, by adopting the four modes

(8x8, 8x16, 16x8 and 16x16) only, the number of CEs

can be reduced from 41 to 9. Similarly, the number of

register pairs to store the minimum SADs and the

corresponding motion vectors can be reduced from 41 to

9. We propose a new VBSME architecture with the

reduced hardware size and the improved performance in

the following section.

III. PROPOSED ARCHITECTURE

A. Four-Mode VBSME Architecture

Fig. 4 shows the overall architecture to implement the

four-mode VBSME for LDPS algorithm. It consists of

four main elements: (1) search window memory and

current MB memory, (2) a block of processing units

(PUs), (3) a comparison unit, and (4) a register storing the

9 minimum SADs and their associated motion vectors.

Our architecture uses the LDPS algorithm, and hence 5

PUs are required. Each PU computes a total of 9 SADs (4

8x8 SADs, 2 8x16 SADs, 2 16x8 SADs and a 16x16

SAD) per candidate MB. Therefore, the comparison unit

is composed of 9 comparison elements, which consists of

one comparator and two registers. The first register stores

the minimum SAD after comparison. The other stores the

motion vector when the input SAD is less than the

previous minimum SAD. Each comparison element

processes 5 SADs of the same sub-block size received

from the 5 PUs. After these SADs are compared in the

comparison unit, the minimum SADs and their associated

MVs are saved in the last register. We choose the first 5

search points in the LDPS algorithm and perform the

computation based on the schedule shown in Table I.

Then, we move to the next search point and perform the

computation until we reach the best match. Table I shows

that each PU is used for the SAD computation between a

candidate and the current block. Hence, 5 block-matching

operations can be performed concurrently in the

architecture. For example, at the first clock cycle, one

row of 16 pixels is calculated simultaneously in each PU.

At the 16th clock cycle, each PU finishes the SAD

computation.

Figure 4. Four-mode VBSME architecture

TABLE I. THE COMPUTATION SCHEDULE FOR PU

Clock PU1 PU2 PU3 PU4 PU5

1    
15

0

i,0 i,0
i

C R


    
15

0

i,0 i,1
i

C R


    
15

0

i,0 i, 1
i

C R


     
15

0

i,0 i+1,0
i

C R



    

15

0

i,0 i-1,0
i

C R




2    
15

0

i,1 i,1
i

C R


    
15

0

i,1 i,2
i

C R


    
15

0

i,1 i,0
i

C R


    
15

0

i,1 i+1,1
i

C R


    
15

0

i,0 i-1,0
i

C R




… … … … … …
15    

15

0

i,14 i,14
i

C R



    

15

0

i,14 i,15
i

C R


    
15

0

i,14 i,13
i

C R



    

15

0

i,14 i+1,14
i

C R




   
15

0

i,14 i-1,14
i

C R




16    
15

0

i,15 i,15
i

C R



   

15

0

i,15 i,16
i

C R


    
15

0

i,15 i,14
i

C R



    

15

0

i,15 i+1,15
i

C R




   
15

0

i,15 i-1,15
i

C R




B. PU Architecture

Our architecture is based on the traditional 1-D tree

architecture. Fig. 5 shows the structure of a PU to contain

16 processing elements (PEs). Each PE computes the

absolute difference between two pixels, one from the

candidate MB and the other from the current MB. PU is

designed as a three-stage pipeline to simultaneously

compute SADs for 16 pixels.

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

53©2015 Engineering and Technology Publishing

Figure 5. Architecture of a processing unit (PU)

In the first stage, 16 pixels are fed in from one row in

the current MB and another row in the search area. The

partial SADs of the neighboring four pixels in the same

row are calculated and latched to the next adder. Finally,

1x4 SADs are stored in the registers R1_1, R1_2, R1_3,

and R1_4.

In the second stage, four 8x8 SADs in one MB are

calculated. Two 1x4 SADs are added to form a 1x8 SAD.

Then, 1x8 SADs are accumulated in the accumulator

(ACC) to form a 8x8 SAD. In addition, two 8x8 SADs

are stored in the 8x8_1 SAD and 8x8_2 SAD registers

after the first eight cycles. Finally, two other 8x8 SADs

are stored in 8x8_3 SAD and 8x8_4 SAD registers after

the next eight cycles.

In the third stage, four 8x8 SADs are input to calculate

16x8, 8x16 and 16x16 SADs. There are four new 8x8

SADs generated every 16 cycles. At the 17th cycle,

8x16_1 SAD is computed by adding 8x8_1 SAD and

8x8_2 SAD. The same operations are performed to

calculate 8x16_2 SAD, 16x8_1 SAD and 16x8_2 SAD.

At the 18th cycle, 16x16 SAD is computed by adding

16x8_1 SAD and 16x8_2 SAD.

Thus, at every clock cycle, the proposed pipelined

architecture computes one new SAD value and stores the

minimum SAD value. Since our architecture is proposed

for VBSME with four modes instead of seven modes, the

hardware size is significantly reduced by saving 737-bit

registers and 32 adders all together.

Furthermore, the number of accumulators is reduced

from sixteen to two compared with the architecture in [1]

by moving each accumulator from a PE to the new

location in stage-2 as shown in Fig. 5. Our architecture

also saves the gate count by decreasing the bit-length of

each adder. For example, an adder at the first stage of PU

has only 8-bit instead of 15-bit in [1].

IV. EXPERIMENTAL RESULTS

Our proposed architecture is implemented in TSMC

0.18µm process. The hardware size is reduced and the

clock frequency is increased. The hardware size of our

design is compared with that of the best-known 1-D tree

architecture [1] in Table II. The overall size is reduced

from 268K gates to 149.2K gates by 44.3%. If we rule

out the common memory buffers and compare the size of

the logic gates only, it is reduced from 182K gates to

63.2K gates by 65.3%.

TABLE II. HARDWARE

Hardware size (K Gates)

[1] Proposed Architecture

PU 16.93 10.54

5PUs 84.65 52.71

Current MB 14.3 14.3

SW buffer 71.7 71.7

Other 97.35 10.49

Total 268 149.2

The size of each PU in our architecture is 10.542K

gates. Compared with 16.93K gates of the previous

architecture [1], the hardware size is reduced by 37.7%.

Moreover, our proposed architecture only uses 9 CEs and

9 register pairs instead of 41 CEs and 41 register pairs,

respectively. Therefore, the hardware size in these two

parts of our architecture is significantly reduced by 89.2%

compared with that in the previous architecture [1].

TABLE III. C

Design Proposed Architecture [1] [2] [5] [6] [7]

PE number 16 16 16 256 16 16

Technology 0.18µm 0.13FPGA 0.18µm 0.18µm 0.18µm 0.18 µm

Frequency(MHz) 546.4 246.5 100 227 48.67 50

Gate count (K) 149.2 268 157 466 546 301

Block size 16x16 to 8x8 16x16 to 4x4 16x16 16x16 to 8x8 16x16 16x16 and 8x8

Table III shows the comparison between our proposed

architecture and five other previous architectures. All the

architectures in comparison have the same I/O size.

Therefore, the operating clock frequency shows their

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

54©2015 Engineering and Technology Publishing

IZE OMPARISONS C

OMPARISON OF UR ROPOSED RCHITECTURE WITH REVIOUS ESIGNO P A P D

performance. Each architecture is implemented by

different technology with various parameters. Therefore,

it is difficult to compare them directly. However, the

comparison still gives us meaningful information.

Compared with 2-D architecture in [5], our proposed

architecture has smaller size and higher frequency. The 1-

D tree architecture in [1] is the best-known architecture

so far.

However, it only achieves the second highest

frequency and the third smallest hardware size in Table

III. Furthermore, their architecture requires more registers

and adders to calculate the sub-blocks of the VBSME

such as 4x4, 4x8 and 8x4 modes in H.264/AVC. The

implementation in [2] adopts LDPS algorithm and

achieves the second smallest hardware size. However, the

block size supported is only 16x16, which leads to poor

image quality. Moreover, their operating clock frequency

is very low (100 MHz) compared with others.

The architectures in [6], [7] are also 1-D tree

architectures. However, they require the largest hardware

size and the lowest clock frequency compared with others

in Table III. Besides, 16x16 mode is only supported in [6]

and 16x16 mode and 8x8 mode are only supported in [7],

which leads to poor image quality. Our proposed

architecture has the smallest gate count of 149.2 K gates.

Furthermore, it achieves the highest frequency of 546.4

MHz compared with other architectures shown in Table

III.

V. CONCLUSION

In this paper, we presented new 1-D tree architecture

for VBSME. By adopting four modes instead of seven

modes for VBSME, the hardware size of our architecture

was significantly reduced. The numbers of CEs and the

register pairs are reduced from 41 to 9, respectively.

Moreover, the accumulator was modified to add the sum

of absolute differences for every eight cycles. Compared

with other architectures known so far, we achieved the

highest operating clock frequency and the smallest

hardware size. Compared with the best-known 1-D tree

architecture in [1], our architecture decreased the

hardware size by 44.3% and increased the clock

frequency by 54.9%. For applications with massive

amount of data such as HDTV and 3DTV, the area and

speed of our design are the best compared with the

designs known so far.

REFERENCES

[1] O. Ndili and T. Ogunfunmi, “Algorithm and architecture co-

design of hardware-oriendted, modified diamond search for fast
motion estimation in H.264/AVC,” IEEE Trans. Circuits

Syst.Video Technol., vol. 21, no. 97, 2011.

[2] M. Kthiri, H. Loukil, I. Werda, A. Ben Atitallah, A. Samet, and N.
Masmoudi, “Hardware implementation of fast block matching

algorithm in FGPA for H.264/AVC,” International Multi-

Conference on Systems, Signals & Devices, 2009.
[3] P. M. Kuhn, “Fast MPEG-4 motion estimation: Processor based

and flexible VLSI implementations,” J. VLSI Signal Process., vol.

23, pp. 67-92, 1999.
[4] C. H. Chou and Y. C. Chen, “A VLSI architecture for real-time

and flexible image template matching,” IEEE Trans. Circuits Syst.,

vol. 36, no. 10, 1989.
[5] Y. Huang, Z. Liu, Y. Song, S. Goto, and T. Ikenaga, “Parallel

improved hdtv720p targeted propagate partial sad architecture for

variable block size motion estimation in h.264/avc,” IEICE Trans.
on Fundamentals, vol. E91-A, no. 4, pp. 987-997, 2008.

[6] W.-M. Chao, C.-W. Hsu, Y.-C. Chang, and L.-G. Chen, “A novel

search,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. II-492–
II- 495, 2002.

[7] S.-S. Lin, “Low-power motion estimation processors for mobile

video application,” M.S. thesis, Graduate Inst. Electron. Eng., Nat.
Taiwan Univ., Taipei, Taiwan, 2004.

Dam Minh Tung received B.S degree in

Electronic and Telecommunication
Engineering from Da Nang university, Viet

Nam in 2010, and M.S.degree in Information

and Communication Engineering from
Myongji University, Korea, in 2013. He is

currently a researcher at Center of Electrical

Engineering (CEE), Duy Tan University, Da
Nang City, Viet Nam. His research interests

include VLSI and FPGA design, hardware

architecture and processors.

Tran Le Thang Dong received B.S degree

Electronics and Telecommunication Bachelor
from Duy Tan university, Viet Nam in 2009,

and M.S.degree in Computer Science from

Duy Tan University, Viet Nam, in 2012. He
is currently a Director at Center of Electrical

Engineering (CEE), Duy Tan University, Da

Nang City, Viet Nam. His research interests
include image processing, design automation

of embedded systems, FPGA design.

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

55©2015 Engineering and Technology Publishing

