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Abstract—In this paper, we propose an efficient VLSI 

architecture for variable block size motion estimation 

(VBSME) in H.264/AVC to reduce the hardware cost and 

latency. The proposed architecture adopts four modes (8x8, 

8x16, 16x8 and 16x16 modes) instead of seven modes for 

VBSME specified in H.264/AVC. Our architecture 

significantly reduces the hardware size by reducing (1) the 

registers and adders in each processing unit, (2) the 

comparison elements, and (3) the registers used to store the 

minimum SADs and motion vectors. The experimental 

result shows that our proposed architecture reduces the 

hardware size by 44.3% while it also increases the operation 

clock frequency by 54.9% compared with the best-known 

architecture. The proposed architecture satisfied the real-

time processing requirement of the massive data in high 

resolution video applications.  

 

Index Terms—H264/AVC, VBSME, motion estimation, 1-D 

tree architecture, VLSI design, video codec 

 

I.  INTRODUCTION 

Block matching algorithm (BMA) is a well-known 

method for motion estimation widely used to reduce the 

temporal redundancy between successive image frames in 

digital video processing. For previous video compression 

standards such as MPEG-2, a fixed- size BMA was mostly 

used. In a typical BMA, each frame of a video sequence is 

divided into a fixed number of non-overlapping square 

blocks. For each block in the current frame, the best 

matching block is searched in the previous frame under a 

certain criterion. In most BMAs, the matching criterion 

used to produce an error cost function is the sum of 

absolute differences (SADs) between the 16x16 

macroblocks (MBs). If x(i, j) and y(i, j) are the pixels of 

the relevant current and candidate MBs, and m and n are 

the coordinates of the motion vector (MV), the SAD is 

then defined as: 
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A fixed 16x16 MB size is well suited for large areas of 

consistent motion, but not suitable to accommodate the 

different changes in object movement within a video 

frame. Therefore, it may limit the performance of the 

BMA for low bit rate video coding applications. 
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H.264/AVC remedies this limitation by using variable 

block size motion estimation (VBSME). The VBSME has 

41 different sub-blocks of seven modes including 16x16, 

16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 modes as shown in 

Fig. 1. 

 

Figure 1.  Variable block sizes supported by H.264/AVC 

Various VLSI architectures have been proposed for 

VBSME implementation. Most of them are based on the 

traditional full search algorithm because of its good 

performance and regularity. However, full search 

algorithm requires high computational cost. Therefore, it 

is only effective when implemented as a dedicated 

hardware. Several fast algorithms such as the three step 

search, the new three step search, the diamond search, 

and the hexagon-based search have been proposed for 

improving motion estimation implementation. Some 

other advanced algorithms such as the cross-diamond 

search, the hardware-oriented modified diamond search 

[1] and the line diamond parallel search (LDPS) [2] have 

been proposed to provide better adaptability and 

searching efficiency for tracking large motions. Among 

these algorithms, LDPS algorithm [2] provides the better 

objective quality and fast searching compared with others. 

Furthermore, the algorithm is simple and suitable for 

hardware implementation. Our proposed architecture is 

based on one of the three widely used architectures: the 

Propagate Partial SAD, the SAD tree and the Parallel 

Sub-Tree. The SAD tree architecture is chosen due to its 

highest performance among the three. In this paper, we 

propose a new SAD tree architecture adopting four 

modes instead of seven modes for VBSME. LDPS 

algorithm is employed for motion estimation to achieve 

low hardware cost and high processing speed. 

This paper is organized as follows. In Section 2, the 

related works are explained. In Section 3, the proposed 

architecture is explained in detail. In Section 4, 
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experimental results are provided. Section 5 concludes 

the paper. 

II.   RELATED WORK 

A. LDPS Algorithm 

The LDPS algorithm exploits the center-biased 

characteristic of the real world video sequences. Fig. 2 is 

used to explain the LDPS algorithm. There are two 

patterns to search the matching point in LDPS. The first 

is the small diamond search pattern (SDSP) used at the 

beginning of a search as shown in Fig. 2(a). The second 

pattern improves the search in the horizontal and vertical 

direction as shown in Fig. 2(b) and (c). The LDPS 

algorithm uses the small diamond search pattern to 

consist of 5 points. The center point of SDSP is the center 

of the search window and four neighboring points are on 

the left, right, top and bottom of the center point as 

described in [2]. The checking points of the SDSP are 

examined one by one from the center to the outside. The 

SDSP determines the direction of the search either 

horizontal or vertical. The search continues until the 

minimum SAD is found at the center point of SDSP. If 

the minimum SAD is found at the four neighboring 

points around the center point, three new points are added 

along the chosen direction. Then, the search process is 

iteratively performed on the new center point. Fig. 2(d) 

shows the flow chart of the LDPS algorithm. 

 
(a) The small diamond search pattern (SDSP)

 

 

(b) Vertical line search
 

 
(c) Horizontal line search 

 

(d) Flow chart of the LDPS algorithm 

Figure 2.  The LDPS algorithm 

B. Overview of VBSME Architecture  

Since motion estimation (ME) is the most 

computation-intensive part in video coding process, 

various architectures have been proposed. For example, a 

1-D and a 2-D ME architectures are proposed in [3] and 

[4], respectively. However, these architectures only 

support 16x16 mode. They are not suitable for 

H.264/AVC. Another 1-D architecture [1] and a 2-D 

architecture [5] are presented supporting the block modes 

in H.264/AVC. Compared with the 1-D architecture, 2-D 

architecture has the higher performance, but it occupies 

larger area.  

Recently, Huang [5] has shown that the three small 

modes of VBSME such as 8x4, 4x8 and 4x4 can be ruled 

out because of their insignificant contribution to the video 

quality especially for high-resolution applications such as 

HDTV. As a result, the architecture for the four-mode 

VBSME can be simplified by reducing the computing 

resources. The 2-D architecture with the mode reduction 
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is presented in [5]. In this paper, we focus on the 

improvement of 1-D architecture by reducing the 

hardware size and increasing the clock frequency.  

 

Figure 3.  The general VBSME architecture 

Fig. 3 shows the general architecture to implement 

seven modes VBSME in H.264/AVC. It needs 41 

comparator elements (CEs) to compare 41 SAD values of 

seven modes (1 16x16, 2 8x16, 2 16x8, 4 8x8, 8 4x8, 8 

8x4 and 16 4x4). However, by adopting the four modes 

(8x8, 8x16, 16x8 and 16x16) only, the number of CEs 

can be reduced from 41 to 9. Similarly, the number of 

register pairs to store the minimum SADs and the 

corresponding motion vectors can be reduced from 41 to 

9. We propose a new VBSME architecture with the 

reduced hardware size and the improved performance in 

the following section. 

III. PROPOSED ARCHITECTURE 

A. Four-Mode VBSME Architecture  

Fig. 4 shows the overall architecture to implement the 

four-mode VBSME for LDPS algorithm. It consists of 

four main elements: (1) search window memory and 

current MB memory, (2) a block of processing units 

(PUs), (3) a comparison unit, and (4) a register storing the 

9 minimum SADs and their associated motion vectors. 

Our architecture uses the LDPS algorithm, and hence 5 

PUs are required. Each PU computes a total of 9 SADs (4 

8x8 SADs, 2 8x16 SADs, 2 16x8 SADs and a 16x16 

SAD) per candidate MB. Therefore, the comparison unit 

is composed of 9 comparison elements, which consists of 

one comparator and two registers. The first register stores 

the minimum SAD after comparison. The other stores the 

motion vector when the input SAD is less than the 

previous minimum SAD. Each comparison element 

processes 5 SADs of the same sub-block size received 

from the 5 PUs. After these SADs are compared in the 

comparison unit, the minimum SADs and their associated 

MVs are saved in the last register. We choose the first 5 

search points in the LDPS algorithm and perform the 

computation based on the schedule shown in Table I. 

Then, we move to the next search point and perform the 

computation until we reach the best match. Table I shows 

that each PU is used for the SAD computation between a 

candidate and the current block. Hence, 5 block-matching 

operations can be performed concurrently in the 

architecture. For example, at the first clock cycle, one 

row of 16 pixels is calculated simultaneously in each PU. 

At the 16th clock cycle, each PU finishes the SAD 

computation.  

 

Figure 4.  Four-mode VBSME architecture 

TABLE I.  THE COMPUTATION SCHEDULE FOR PU 

Clock PU1 PU2 PU3 PU4 PU5 
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B. PU Architecture 

Our architecture is based on the traditional 1-D tree 

architecture. Fig. 5 shows the structure of a PU to contain 

16 processing elements (PEs). Each PE computes the 

absolute difference between two pixels, one from the 

candidate MB and the other from the current MB. PU is 

designed as a three-stage pipeline to simultaneously 

compute SADs for 16 pixels.  
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Figure 5.  Architecture of a processing unit (PU) 

In the first stage, 16 pixels are fed in from one row in 

the current MB and another row in the search area. The 

partial SADs of the neighboring four pixels in the same 

row are calculated and latched to the next adder. Finally, 

1x4 SADs are stored in the registers R1_1, R1_2, R1_3, 

and R1_4. 

In the second stage, four 8x8 SADs in one MB are 

calculated. Two 1x4 SADs are added to form a 1x8 SAD. 

Then, 1x8 SADs are accumulated in the accumulator 

(ACC) to form a 8x8 SAD. In addition, two 8x8 SADs 

are stored in the 8x8_1 SAD and 8x8_2 SAD registers 

after the first eight cycles. Finally, two other 8x8 SADs 

are stored in 8x8_3 SAD and 8x8_4 SAD registers after 

the next eight cycles.  

In the third stage, four 8x8 SADs are input to calculate 

16x8, 8x16 and 16x16 SADs. There are four new 8x8 

SADs generated every 16 cycles. At the 17th cycle, 

8x16_1 SAD is computed by adding 8x8_1 SAD and 

8x8_2 SAD. The same operations are performed to 

calculate 8x16_2 SAD, 16x8_1 SAD and 16x8_2 SAD. 

At the 18th cycle, 16x16 SAD is computed by adding 

16x8_1 SAD and 16x8_2 SAD.  

Thus, at every clock cycle, the proposed pipelined 

architecture computes one new SAD value and stores the 

minimum SAD value. Since our architecture is proposed 

for VBSME with four modes instead of seven modes, the 

hardware size is significantly reduced by saving 737-bit 

registers and 32 adders all together.  

Furthermore, the number of accumulators is reduced 

from sixteen to two compared with the architecture in [1] 

by moving each accumulator from a PE to the new 

location in stage-2 as shown in Fig. 5. Our architecture 

also saves the gate count by decreasing the bit-length of 

each adder. For example, an adder at the first stage of PU 

has only 8-bit instead of 15-bit in [1]. 

IV. EXPERIMENTAL RESULTS 

Our proposed architecture is implemented in TSMC 

0.18µm process. The hardware size is reduced and the 

clock frequency is increased. The hardware size of our 

design is compared with that of the best-known 1-D tree 

architecture [1] in Table II. The overall size is reduced 

from 268K gates to 149.2K gates by 44.3%. If we rule 

out the common memory buffers and compare the size of 

the logic gates only, it is reduced from 182K gates to 

63.2K gates by 65.3%. 

TABLE II.  HARDWARE   

 

 

Hardware size (K Gates) 

[1] Proposed Architecture 

PU 16.93 10.54 

5PUs 84.65 52.71 

Current MB  14.3 14.3 

SW buffer 71.7 71.7 

Other 97.35 10.49 

Total 268 149.2 

 

The size of each PU in our architecture is 10.542K 

gates. Compared with 16.93K gates of the previous 

architecture [1], the hardware size is reduced by 37.7%. 

Moreover, our proposed architecture only uses 9 CEs and 

9 register pairs instead of 41 CEs and 41 register pairs, 

respectively. Therefore, the hardware size in these two 

parts of our architecture is significantly reduced by 89.2% 

compared with that in the previous architecture [1].  

TABLE III.  C  

Design Proposed Architecture [1] [2] [5] [6] [7] 

PE number 16 16 16 256 16 16 

Technology 0.18µm 0.13FPGA 0.18µm 0.18µm 0.18µm 0.18 µm 

Frequency(MHz) 546.4 246.5 100 227 48.67 50 

Gate count (K) 149.2 268 157 466 546 301 

Block size 16x16 to 8x8 16x16 to 4x4 16x16 16x16 to 8x8 16x16 16x16 and 8x8 

 

Table III shows the comparison between our proposed 

architecture and five other previous architectures. All the 

architectures in comparison have the same I/O size. 

Therefore, the operating clock frequency shows their 
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performance. Each architecture is implemented by 

different technology with various parameters. Therefore, 

it is difficult to compare them directly. However, the 

comparison still gives us meaningful information. 

Compared with 2-D architecture in [5], our proposed 

architecture has smaller size and higher frequency. The 1-

D tree architecture in [1] is the best-known architecture 

so far. 

However, it only achieves the second highest 

frequency and the third smallest hardware size in Table 

III. Furthermore, their architecture requires more registers 

and adders to calculate the sub-blocks of the VBSME 

such as 4x4, 4x8 and 8x4 modes in H.264/AVC. The 

implementation in [2] adopts LDPS algorithm and 

achieves the second smallest hardware size. However, the 

block size supported is only 16x16, which leads to poor 

image quality. Moreover, their operating clock frequency 

is very low (100 MHz) compared with others.  

The architectures in [6], [7] are also 1-D tree 

architectures. However, they require the largest hardware 

size and the lowest clock frequency compared with others 

in Table III. Besides, 16x16 mode is only supported in [6] 

and 16x16 mode and 8x8 mode are only supported in [7], 

which leads to poor image quality. Our proposed 

architecture has the smallest gate count of 149.2 K gates. 

Furthermore, it achieves the highest frequency of 546.4 

MHz compared with other architectures shown in Table 

III. 

V.   CONCLUSION 

In this paper, we presented new 1-D tree architecture 

for VBSME. By adopting four modes instead of seven 

modes for VBSME, the hardware size of our architecture 

was significantly reduced. The numbers of CEs and the 

register pairs are reduced from 41 to 9, respectively. 

Moreover, the accumulator was modified to add the sum 

of absolute differences for every eight cycles. Compared 

with other architectures known so far, we achieved the 

highest operating clock frequency and the smallest 

hardware size. Compared with the best-known 1-D tree 

architecture in [1], our architecture decreased the 

hardware size by 44.3% and increased the clock 

frequency by 54.9%. For applications with massive 

amount of data such as HDTV and 3DTV, the area and 

speed of our design are the best compared with the 

designs known so far. 
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