
Preference Detection in Multi-Attribute Multi-

item Choice Environments

Amir Konigsberg and Ron Asherov
General Motors R&D

Email: amir.konigsberg@gm.com, rasherov@gmail.com

Abstract—We propose a novel method for evaluating,

detecting, and inferring preferences in choice situations

involving items with multiple attributes. Our method locates

characteristics that reflect the relative weight that a user

gives to varying attributes belonging to an item, when these

attributes are combined into a unified multi-attribute utility

function. Our method enables the attainment of coefficients

that reflect the preferential prism of a user in relation to

items with multiple attributes. Broadly, we translate the

form of a u-function into an inequality with scalar variables

which define half-spaces on a plane. These half-spaces

intersect and form closed shapes (in a k-dimensional world).

The closed shapes with the most intersections are the most

likely areas in which the vector lies. Attaining

the values of the various xi allow a computational system to

restore the u-function. This enables the system to predict the

alternative item’s total utilities in yet unmet choice-making

scenarios. A novel extension of methods relates to the

identification of inconsistent choice-making. In addressing

the latter problem, we note that hyper-planes split the n-

dimensional world into parts. We relate to every one of

these parts (segments or rays in 1D, shapes, bounded or

unbounded, in 2D), and count the number of half-spaces

that contain it; this number reflects the probability that the

actual (unknown) parameters are in it. Counting the

number of half-spaces containing each segment allows us to

consider multiple user profiles and considerations. This

paves the way to the construction of more complex

frameworks for understanding user choice as a multi-

criteria decision making problem.

Index Terms—preference detection, multi-attribute decision

making, multi-item choice, recommender systems.

I. INTRODUCTION

Item choice is often attribute-based (see: [1]-[9]). If we

take movies as an example, we often choose movies

because of their attributes – the actors, the plot, the genre,

etc. And when a user chooses an item, we often believe

that his selection is a function of the values of the

attributes that the chosen item possesses, in relation to

attributes of the same type that all other (un-chosen)

items possess. Generally speaking, once we know which

attributes a user prefers, and to what extent, we can infer

user preferences in relation to other items in a designated

domain. And once we have an understanding of user

preferences we can predict their acceptance of and

Manuscript received December 5, 2013; revised February 10, 2014.

satisfaction with unfamiliar items. We propose a model

with this purpose in mind.

II. MODEL

Mathematically, every option a in a specific item

domain (e.g., movie recommendations, local service

suggestions) can be thought of as a vector:
 , in which the i-th component houses the

value with respect to the i-th attribute; what we mean by

this is that the subjective value of an attribute belonging

to an item is a function of the conjunction of the objective

attribute of that same item and the personal preference

that a user has in relation to it.

So if, for example, we consider the domain of “movies,”

and the first attribute of a movie is “actors,” will be a

number representing the extent to which the user likes the

actors of the movie. Generally speaking, in our model

different items in the same domain will have the same

attributes, but with different values. Therefore a single

decision-making scenario can be modeled by a matrix

with n (the number of alternative items (or options)) rows

and k (the number of attributes) columns. See Table I,

below:

TABLE I. MATRIX

In this case the i-th row represents the i-th item in the

option space.

When a user faces a choice-selection scenario, we

assume that he computes a total utility of an item from

the set of available items. This utility represents how

appealing that item appears to him in view of its

attributes. We believe this to be true even if the user is

not aware of having considered the attributes. And hence

we believe this matrix is reflective of the item selection

scenario, whether or not the user is aware of the values of

the varying item’s attributes. Moreover, so that this

model does not appear far removed from the way people

actually make choices or accept recommendations, let us

note that in our proposed method it is sufficient to know

the total utility of an item for the purpose of evaluating

and comparing options. It is because of this that we add a

“utility column” to the matrix, as in Table II:

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

46©2015 Engineering and Technology Publishing
doi: 10.12720/joace.3.1.46-50

TABLE II. MATRIX

The user assesses the items and, because he is a

maximizer, he chooses the item with the greatest utility.

In abstraction, a user’s behavior can thus be modeled in

the following way:

 Find details about the available items

 With respect to the details found, find the total

utility of each item

 Choose the best item

In accordance with these three steps taken by the user

in relation to the items, we model a computational

system’s behavior:

 Fill in (populate) the matrix

 Add another column to the matrix, and enter the

total utility of every row

 Pick the row with the maximal last-column value

While steps #1 and #3 are relatively simple for a

computational system, step #2 appears to be the real

challenge – how should the system derive the appropriate

function that aggregates all the attributes of an item into a

single total utility?

It is to this problem that we presently turn. Let us

begin by modeling the problem (see also: (Beliakov,

Calvo, and James 2011)), and then proceed to offer a

solution to it. First of all, it follows from the above noted

stipulation that the single, total score, of an option is a

function of its attributes:

The next, seemingly trivial step is to remove the index

of the function, so that the total utilities are computed in

the same way for all items in the option space.

This step represents the fact that when comparing

several options the user relates unvaryingly to the (same)

features of the different options. Hence a user may

strongly prefer a higher score on the first attribute than on

the second attribute, but he cannot have such preferences

for the first item without having the same preferences for

the second item too. For example, someone who, when it

comes to movies, systematically prefers a good plot to

good actors ought to do so for all the movies (items) he

considers (note that this does not mean that a movie with

a poor plot may not be chosen; it may, if for instance its

actors are extremely good and thus outweigh the low

score of the movie in terms of its plot).

In the system model that we propose, understanding

the user’s mechanism of rating (and then ranking) items

is based on understanding the nature of this utility-

function (u-function). Generally speaking, this u-function

can be appraised by examining a user’s previous choice-

behavior. For instance, if in the past a user has

systematically chosen movies by their director, it can be

assumed that the user’s u-function “prefers” - i.e. gives

greater weight to - the attribute associated with the

director of the movie.

For the sake of simplicity, we assume that u takes the

form of a weighted sum:

 ∑

We choose the form of a weighted sum because it is

general enough to allow biases and counter-relations

among the different attributes. By changing the ’s we

can modify the weights and hence understand what

factors or attributes are more important to a specific user,

and to what extent. The relations between the ’s

represent the relations between the importance that the

user assigns to the varying attributes. Another advantage

of this weighted form lies in its simplicity - in using it we

reduce the problem (i.e., step #2 above) from estimating a

function to estimating a “direction vector” that

represents the importance that the user assigns to each of

the attributes – i.e., what factors are more important in the

general estimation of an item (high), and what factors

don’t matter (low). Since we only compare utilities (we

are not interested in the absolute value of the total utility

of an item, but only in the relation between the different

total utilities of different items), we may assume that

 , and then any other is measured with respect to

that .We will presently continue to demonstrate

the method by which our system learns what is important

to a specific user when it comes to choices between items.

Consider two items, A and B. Suppose a user picks A.

Using the proposed model, this entails that . And

because we know the form of the u-function, this is

translated to an inequality with scalar variables:

∑

 ∑

And this inequality defines a half-space:

∑

These half-spaces intersect and form closed shapes (in

a k-dimensional world). And the closed shapes with the

most intersections are the most likely areas in which the

vector lies. Attaining the values of the various

 will allow the system to restore the u-function from

above. Once that is done, the system can, in later choice-

making scenarios, predict the total utilities of alternative

choice-items, and can therefore give valuable

recommendations, or alert the user when an inconsistent

choice is made.

Let us demonstrate this approach in an item domain

that has two attributes. As noted above, we can assume

that one of the weights is 1 (otherwise we will just divide

all weights by 1). The weights represent the coordinates

of the direction vector , which reflects the

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

47©2015 Engineering and Technology Publishing

extent to which a user wishes to maximize a particular

attribute of an item in a choice situation. The general

form of such a u-function is thus , where

A is a constant that represents the importance (or weight)

that the user assigns to the first attribute, with respect to

the second attribute. Therefore in order to find the user’s

u-function, we have to estimate the constant A.

Consider this set of items, composed of attributes a andb,

in which the item selected by a user is designated by the

gray row in Table III:

TABLE III. TABLE SHOWING ITEM AND ATTRIBUTE VALUES

Item # A B

I 1 6

II 3 7

III 5 4

IV 6 1

V 5.5 2.75

Now let us compare item I and item III (the selected,

grey, item). We assume that III’s utility is greater than I’s

utility (because III was chosen). So as a result we get the

following inequality:

Which translates to . In the same way,

comparing items II and III gives us and

so . So far we have only acquired lower bounds

on A (which is because we have only considered items

with a smaller a-value than the selected option’s a-value);

comparing the selected item (III) to item IV gives us

 and so ; comparing item III to

item V results in and so .

Hence by considering all possible comparisons

between the selected item and the alternative items, we

get , which represents the range within

which all additional choices will be consistent with the

choice-behavioral pattern that we have assessed. And

therefore a good estimation for what is within this

domain is , the median between 1.5 and 2.5.

Furthermore, tracking further decision scenarios can lead

to tighter bounds and hence more accurate estimations.

The method proposed is illustrated in the Table IV below.

TABLE IV. ILLUSTRATION OF METHOD

III. MULTI-ATTRIBUTE DOMAINS

The transition from a two attribute domain to a three or

multiple attribute domain is a matter of logical

progression. In a domain with three attributes the u-

function takes the form: u(a,b,c) = Aa + Bb + c. And

therefore understanding the user’s preferences under this

model is in effect akin to finding a point in the two-

dimensional plane, representing the constants (A,B).

Every comparison between two choices is translated

mathematically to an inequality of the form:
 ; this defines a half-space, bounded by the equation

 , which defines a line (in the (A,B) plane).

Further comparisons between items result in more lines

and more half-spaces; their intersection gives a two-

dimensional shape, in which the actual A,B values are

expected to be found.

IV. EXTENSIONS

A first, rather simple extension of this model relates to

inconsistencies. While in the previous example all half-

spaces (which were rays) intersected, there is no

guarantee that things will always be this way. It is quite

possible that as a result of a mistake made by a user, or

rather a misjudgment, or just simple spontaneity, an

inconsistent choice is made. Following the last example,

we might get a choice that implies , which

contradicts our previous inequality (more

complicated examples of higher dimensions can easily be

thought of). In order to solve this issue, we note that these

hyper-planes split the n-dimensional world into parts. We

can consider every such part (segments or rays in 1D,

shapes, bounded or unbounded, in 2D), and count the

number of half-spaces that contain it; this number reflects

the probability that the actual parameters are contained in

it. Relating to the previous example we get the following

(Table V):

TABLE V. NUMBER OF HALF SPACES PER SEGMENT

Segment Number of half-spaces

 2

 3

 4

 3

 2

According to this logic we see that the segment

 is chosen (highlighted in grey), because it

is contained in the most half-spaces. If for some reason

we infer from a user’s choice-behavior that ,

despite the fact that it is inconsistent with previous

choices, the segment will still be chosen.

Furthermore, this extension also enables us to track

several kinds of preferences that a user may have in

relation to the same, or similar, sets of items. Consider,

for example, a user that has two “modes” – either he uses

 very close to 2 (e.g., when he’s in a good mood), or

very close to 5 (e.g., when he is in a bad mood). Counting

the number of half-spaces containing each segment

allows us to consider multiple user profiles and

considerations. And this paves the way for the

construction of more complex frameworks for

understanding user choice as a multi-criteria decision

making problem. After all, users often make choices on

the basis of multiple criteria, in addition to making

choices on the basis of multiple attributes. And some

criteria may lead users to modify their choice-making

between different items and constituent attributes.

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

48©2015 Engineering and Technology Publishing

The figure below shows the relevant half-spaces for a

set of ten independent choices made by a user. As can be

seen, every half-space on the number axis defines a point

and its edge, and so the ten choices define eleven

segments. Above the number axis, directly above each of

ten choices, the number of choices with which each

segment is consistent is noted. Thus one can easily

identify that the user whose choice-behavior is reflected

in this illustration has two choice-modes – either his

coefficient is in the intersection of choices 1-5 and 7, 9,

or in the intersection of choices 2, 4 & 6-10, as in Table

VI:

TABLE VI. ILLUSTRATION OF TWO CHOICE-MODES

This capacity to detect multi-mode choice behavior

implies several things:

 It is extends the notion of choice consistency: it

shows that choices can be consistent in some

situations but not in others; for example, John

may prefer sad movies on weekends but prefer

comedies throughout the working-week.

 Learning (see also: (Rubens, Kaplan, and

Sugiyama 2011)): a system can implement the

method outlined above and then learn that a

specific user has several choice “modes.” The

system can also learn to detect and predict each

of these modes. Moreover, it can also learn to

match specific items to each mode, thus

increasing the predicted accuracy of item

placements and suggestions.

V. EVALUATION

As a means of evaluation, we used a computer

application that modeled the system presented here, with

a randomly generated input. Every decision scenario

contained ten options, each had two attributes (a andb)

which were drawn randomly and uniformly between 0

and 1. We, as testers of the system, knew the parameters

(A), and so could feed the system with those ten options

and the selected option (after deciding a-priori the value

of A). We then tested if the system could estimate the

missing factor correctly.

For a pre-decided value of A = 2, and for twenty

randomly generated decision scenarios, the system came

up with the following graph, whose x-axis represents the

estimated value of A, and the y-axis represents the

likelihood that this value of A was actually chosen (the y-

axis is, in fact, the number of half-spaces that contain that

point, normalized to lie in [0,1]). As can be seen in Table

VII, the system’s estimation for A is around 1.98, which

is fairly close (with a relative error of about 1%) for a

relatively small database.

TABLE VII.

We then proceeded to evaluate the system’s reaction to

inconsistencies (Table VIII) Assuming an error rate of 15%

(in which a random option was selected), it took the

system 50 scenarios to reach the same 1% relative error.

It should be made clear that tolerating greater relative

error (which may be true when we compare different

utilities, as will be shown shortly) allows the system to

use far less scenarios to learn the user.

TABLE VIII. ILLUSTRATION OF SYSTEM’S RESPONSE TO

INCONSISTENCIES

As mentioned above, knowing the exact value of the

parameter is not crucial in order to achieve high

prediction rates. Repeating the last example, but having

only 15 trials in the learning phase, the system estimated

the value 2.138. While it is quite far from the actual value

of 2, using that estimation the system guessed the user’s

choice correctly in 97915 out of 10000 randomly

generated decision scenarios of ten choices each (almost

98% success rate, assuming the system had to guess the

right one out of ten options; if we only have five options

per scenario, the rate gets even higher).

For the detection of multiple profiles (or “modes”), a

slight modification for the algorithm has been used.

Unfortunately, detection of multiple profiles (or

“modes”) are not as successful, as with randomly chosen

options, it very likely that a selection made under one

mode will affect the system’s notion of the other modes,

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

49©2015 Engineering and Technology Publishing

ESTIMATION OF A

or possible modes around the real mode. For instance, if

one mode has A = 2, and the other A = 0.3, then the

system may mistakenly consider any number between 0.3

and 2 to be a mode. This problem requires further

research. One possible solution is for the system to, upon

detection of a mode, ignore all decisions that are

consistent with the detected mode, and run a second

“mode analysis” on the remaining scenarios. Yet this can

be problematic in the sense that it ignores many useful

scenarios too (for example, A > 0.1 works for both modes

and hence will be mistakenly deleted).

It is important to note that in the evaluation presented

above, the system was fed with completely randomly

generated options; we conjecture that the system may

work significantly better if it specifically asks for the user

to make decisions in tailored scenarios, fit for the

system’s needs. For example, if the system detects that

the parameter A may lie between 1 and 3, it will not ask

if A is greater or smaller than 4, but rather ask if it is

greater or smaller than 2. An approach similar to the

binary search algorithm may be used here.

VI. CONCLUSION

We presented an outline of a method that locates

characteristics that reflect the relative weight that a user

gives to attributes belonging to an item in making utility

based decisions with regard to that item. The method we

propose supports decision making in multi-choice

scenarios. We showed how our method can detect

preference changes of a single user and users with

multiple preferences. The method can also serve de-

biasing purposes, such as monitoring for consistent and

coherent choice patterns.

REFERENCES

[1] J. Basilico and T. Hofmann, “Unifying collaborative and content-
based filtering,” in Proc. Twenty-First International Conference

on Machine Learning, New York, USA: ACM, 2004.

[2] G. Beliakov, T. Calvo, and S. James. “Aggregation of preferences
in recommender systems,” in Recommender Systems Handbook,

January 1, 2011, pp. 705–734.

[3] M. Deshpande and G. Karypis, “Item-based top-n
recommendation algorithms,” ACM Trans. Inf. Syst., vol. 22, no. 1,

pp. 143–177, January 2004.

[4] N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in
recommender systems,” in Recommender Systems Handbook, F.

Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Boston, MA:

Springer US, 2011, pp. 735–767.
[5] M. Salehi, I. N. Kamalabadi, and M. B. G. Ghoushchi,

“Personalized recommendation of learning material using

sequential pattern mining and attribute based collaborative
filtering,” Education and Information Technologies, December 29,

2012.

[6] M. Salehi, M. Pourzaferani, and S. A. Razavi, “Hybrid attribute-
based recommender system for learning material using genetic

algorithm and a multidimensional information model,” Egyptian

Informatics Journal, vol. 14, no. 1, pp. 67–78, March 2013.
[7] S. Sinha, K. S. Rashmi, and R. Sinha, Beyond Algorithms: An HCI

Perspective on Recommender Systems, 2001.

[8] R. Srikant and R. Agrawal, “Mining sequential patterns:
Generalizations and performance improvements,” in Research

Report RJ 9994, IBM Almaden Research, 1995.

[9] M. Stritt, K. H. L. Tso, and L. S. Thieme, “Attribute aware
anonymous recommender systems,” in Advances in Data Analysis,

R. Decker and H.-J. Lenz, Eds., Berlin, Heidelberg: Springer

Berlin Heidelberg, January 15, 2014, pp. 497–504.

Dr. Amir Konigsberg is a senior scientist at

General Motors Research and Development
Labs, where he works on advanced

technologies in the field of artificial

intelligence and human machine interaction.
Amir gained his PhD from the Center for the

Study of Rationality and Interactive Decision

Theory at the Hebrew University in Jerusalem
and the Psychology Department at Princeton

University.

Ron Asherov is an intern research at General Motors R&D.

Journal of Automation and Control Engineering Vol. 3, No. 1, February 2015

50©2015 Engineering and Technology Publishing

