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Abstract—We propose a novel method for evaluating, 

detecting, and inferring preferences in choice situations 

involving items with multiple attributes. Our method locates 

characteristics that reflect the relative weight that a user 

gives to varying attributes belonging to an item, when these 

attributes are combined into a unified multi-attribute utility 

function. Our method enables the attainment of coefficients 

that reflect the preferential prism of a user in relation to 

items with multiple attributes. Broadly, we translate the 

form of a u-function into an inequality with scalar variables 

which define half-spaces on a plane. These half-spaces 

intersect and form closed shapes (in a k-dimensional world). 

The closed shapes with the most intersections are the most 

likely areas in which the vector           lies. Attaining 

the values of the various xi allow a computational system to 

restore the u-function. This enables the system to predict the 

alternative item’s total utilities in yet unmet choice-making 

scenarios. A novel extension of methods relates to the 

identification of inconsistent choice-making. In addressing 

the latter problem, we note that hyper-planes split the n-

dimensional world into parts. We relate to every one of 

these parts (segments or rays in 1D, shapes, bounded or 

unbounded, in 2D), and count the number of half-spaces 

that contain it; this number reflects the probability that the 

actual (unknown) parameters are in it. Counting the 

number of half-spaces containing each segment allows us to 

consider multiple user profiles and considerations. This 

paves the way to the construction of more complex 

frameworks for understanding user choice as a multi-

criteria decision making problem.  

 

Index Terms—preference detection, multi-attribute decision 

making,  multi-item choice,  recommender systems. 

 

I. INTRODUCTION 

Item choice is often attribute-based (see: [1]-[9]). If we 

take movies as an example, we often choose movies 

because of their attributes – the actors, the plot, the genre, 

etc.  And when a user chooses an item, we often believe 

that his selection is a function of the values of the 

attributes that the chosen item possesses, in relation to 

attributes of the same type that all other (un-chosen) 

items possess. Generally speaking, once we know which 

attributes a user prefers, and to what extent, we can infer 

user preferences in relation to other items in a designated 

domain. And once we have an understanding of user 

preferences we can predict their acceptance of and 
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satisfaction with unfamiliar items. We propose a model 

with this purpose in mind. 

II. MODEL 

Mathematically, every option a in a specific item 

domain (e.g., movie recommendations, local service 

suggestions) can be thought of as a vector:   
           , in which the i-th component houses the 

value with respect to the i-th attribute; what we mean by 

this is that the subjective value of an attribute belonging 

to an item is a function of the conjunction of the objective 

attribute of that same item and the personal preference 

that a user has in relation to it.  

So if, for example, we consider the domain of “movies,” 

and the first attribute of a movie is “actors,”   will be a 

number representing the extent to which the user likes the 

actors of the movie. Generally speaking, in our model 

different items in the same domain will have the same 

attributes, but with different values. Therefore a single 

decision-making scenario can be modeled by a matrix 

with n (the number of alternative items (or options)) rows 

and k (the number of attributes) columns. See Table I, 

below: 

TABLE I.  MATRIX 

              

              

        
              

 

In this case the i-th row represents the i-th item in the 

option space. 

When a user faces a choice-selection scenario, we 

assume that he computes a total utility of an item from 

the set of available items. This utility represents how 

appealing that item appears to him in view of its 

attributes. We believe this to be true even if the user is 

not aware of having considered the attributes. And hence 

we believe this matrix is reflective of the item selection 

scenario, whether or not the user is aware of the values of 

the varying item’s attributes. Moreover, so that this 

model does not appear far removed from the way people 

actually make choices or accept recommendations, let us 

note that in our proposed method it is sufficient to know 

the total utility of an item for the purpose of evaluating 

and comparing options. It is because of this that we add a 

“utility column” to the matrix, as in Table II:  
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TABLE II.  MATRIX 

                 

                 

          

                 

 

The user assesses the items and, because he is a 

maximizer, he chooses the item with the greatest utility. 

In abstraction, a user’s behavior can thus be modeled in 

the following way: 

 Find details about the available items 

 With respect to the details found, find the total 

utility of each item 

 Choose the best item 

In accordance with these three steps taken by the user 

in relation to the items, we model a computational 

system’s behavior: 

 Fill in (populate) the matrix 

 Add another column to the matrix, and enter the 

total utility of every row 

 Pick the row with the maximal last-column value  

While steps #1 and #3 are relatively simple for a 

computational system, step #2 appears to be the real 

challenge – how should the system derive the appropriate 

function that aggregates all the attributes of an item into a 

single total utility? 

It is to this problem that we presently turn. Let us 

begin by modeling the problem (see also: (Beliakov, 

Calvo, and James 2011)), and then proceed to offer a 

solution to it. First of all, it follows from the above noted 

stipulation that the single, total score, of an option is a 

function of its attributes: 

                     

The next, seemingly trivial step is to remove the index 

of the function, so that the total utilities are computed in 

the same way for all items in the option space. 

                    

This step represents the fact that when comparing 

several options the user relates unvaryingly to the (same) 

features of the different options. Hence a user may 

strongly prefer a higher score on the first attribute than on 

the second attribute, but he cannot have such preferences 

for the first item without having the same preferences for 

the second item too. For example, someone who, when it 

comes to movies, systematically prefers a good plot to 

good actors ought to do so for all the movies (items) he 

considers (note that this does not mean that a movie with 

a poor plot may not be chosen; it may, if for instance its 

actors are extremely good and thus outweigh the low 

score of the movie in terms of its plot).   

In the system model that we propose, understanding 

the user’s mechanism of rating (and then ranking) items 

is based on understanding the nature of this utility-

function (u-function). Generally speaking, this u-function 

can be appraised by examining a user’s previous choice-

behavior. For instance, if in the past a user has 

systematically chosen movies by their director, it can be 

assumed that the user’s u-function “prefers” - i.e. gives 

greater weight to - the attribute associated with the 

director of the movie. 

For the sake of simplicity, we assume that u takes the 

form of a weighted sum: 

               ∑    

 

   

 

We choose the form of a weighted sum because it is 

general enough to allow biases and counter-relations 

among the different attributes. By changing the   ’s we 

can modify the weights and hence understand what 

factors or attributes are more important to a specific user, 

and to what extent. The relations between the   ’s 

represent the relations between the importance that the 

user assigns to the varying attributes. Another advantage 

of this weighted form lies in its simplicity - in using it we 

reduce the problem (i.e., step #2 above) from estimating a 

function to estimating a “direction vector”          that 

represents the importance that the user assigns to each of 

the attributes – i.e., what factors are more important in the 

general estimation of an item (high  ), and what factors 

don’t matter (low  ). Since we only compare utilities (we 

are not interested in the absolute value of the total utility 

of an item, but only in the relation between the different 

total utilities of different items), we may assume that 

    , and then any other    is measured with respect to 

that     .We will presently continue to demonstrate 

the method by which our system learns what is important 

to a specific user when it comes to choices between items.  

Consider two items, A and B. Suppose a user picks A. 

Using the proposed model, this entails that     . And 

because we know the form of the u-function, this is 

translated to an inequality with scalar variables: 

∑    

 

   

 ∑    

 

   

 

And this inequality defines a half-space: 

∑         

 

   

   

These half-spaces intersect and form closed shapes (in 

a k-dimensional world). And the closed shapes with the 

most intersections are the most likely areas in which the 

vector          lies. Attaining the values of the various 

  will allow the system to restore the u-function from 

above. Once that is done, the system can, in later choice-

making scenarios, predict the total utilities of alternative 

choice-items, and can therefore give valuable 

recommendations, or alert the user when an inconsistent 

choice is made. 

Let us demonstrate this approach in an item domain 

that has two attributes. As noted above, we can assume 

that one of the weights is 1 (otherwise we will just divide 

all weights by 1). The weights represent the coordinates 

of the direction vector          , which reflects the 
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extent to which a user wishes to maximize a particular 

attribute of an item in a choice situation. The general 

form of such a u-function is thus           , where 

A is a constant that represents the importance (or weight) 

that the user assigns to the first attribute, with respect to 

the second attribute. Therefore in order to find the user’s 

u-function, we have to estimate the constant A.  

Consider this set of items, composed of attributes a andb, 

in which the item selected by a user is designated by the 

gray row in Table III: 

TABLE III.  TABLE SHOWING ITEM AND ATTRIBUTE VALUES 

Item # A B 

I 1 6 

II 3 7 

III 5 4 

IV 6 1 

V 5.5 2.75 

 

Now let us compare item I and item III (the selected, 

grey, item). We assume that III’s utility is greater than I’s 

utility (because III was chosen). So as a result we get the 

following inequality: 

         

Which translates to      . In the same way, 

comparing items II and III gives us           and 

so      . So far we have only acquired lower bounds 

on A (which is because we have only considered items 

with a smaller a-value than the selected option’s a-value); 

comparing the selected item (III) to item IV gives us 

          and so    ; comparing item III to 

item V results in                and so      .  

Hence by considering all possible comparisons 

between the selected item and the alternative items, we 

get          , which represents the range within 

which all additional choices will be consistent with the 

choice-behavioral pattern that we have assessed. And 

therefore a good estimation for what   is within this 

domain is    , the median between 1.5 and 2.5. 

Furthermore, tracking further decision scenarios can lead 

to tighter bounds and hence more accurate estimations. 

The method proposed is illustrated in the Table IV below. 

TABLE IV.  ILLUSTRATION OF METHOD 

 

III. MULTI-ATTRIBUTE DOMAINS 

The transition from a two attribute domain to a three or 

multiple attribute domain is a matter of logical 

progression. In a domain with three attributes the u-

function takes the form: u(a,b,c) = Aa + Bb + c. And 

therefore understanding the user’s preferences under this 

model is in effect akin to finding a point in the two-

dimensional plane, representing the constants (A,B). 

Every comparison between two choices is translated 

mathematically to an inequality of the form:       
 ; this defines a half-space, bounded by the equation 

       , which defines a line (in the (A,B) plane). 

Further comparisons between items result in more lines 

and more half-spaces; their intersection gives a two-

dimensional shape, in which the actual A,B values are 

expected to be found. 

IV. EXTENSIONS 

A first, rather simple extension of this model relates to 

inconsistencies. While in the previous example all half-

spaces (which were rays) intersected, there is no 

guarantee that things will always be this way. It is quite 

possible that as a result of a mistake made by a user, or 

rather a misjudgment, or just simple spontaneity, an 

inconsistent choice is made. Following the last example, 

we might get a choice that implies    , which 

contradicts our previous inequality      (more 

complicated examples of higher dimensions can easily be 

thought of). In order to solve this issue, we note that these 

hyper-planes split the n-dimensional world into parts. We 

can consider every such part (segments or rays in 1D, 

shapes, bounded or unbounded, in 2D), and count the 

number of half-spaces that contain it; this number reflects 

the probability that the actual parameters are contained in 

it. Relating to the previous example we get the following 

(Table V): 

TABLE V.  NUMBER OF HALF SPACES PER SEGMENT 

Segment Number of half-spaces 

      2 

          3 

          4 

        3 

    2 

 

According to this logic we see that the segment 

          is chosen (highlighted in grey), because it 

is contained in the most half-spaces. If for some reason 

we infer from a user’s choice-behavior that    , 

despite the fact that it is inconsistent with previous 

choices, the segment           will still be chosen. 

Furthermore, this extension also enables us to track 

several kinds of preferences that a user may have in 

relation to the same, or similar, sets of items. Consider, 

for example, a user that has two “modes” – either he uses 

  very close to 2 (e.g., when he’s in a good mood), or 

very close to 5 (e.g., when he is in a bad mood). Counting 

the number of half-spaces containing each segment 

allows us to consider multiple user profiles and 

considerations. And this paves the way for the 

construction of more complex frameworks for 

understanding user choice as a multi-criteria decision 

making problem. After all, users often make choices on 

the basis of multiple criteria, in addition to making 

choices on the basis of multiple attributes. And some 

criteria may lead users to modify their choice-making 

between different items and constituent attributes.  
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The figure below shows the relevant half-spaces for a 

set of ten independent choices made by a user. As can be 

seen, every half-space on the number axis defines a point 

and its edge, and so the ten choices define eleven 

segments. Above the number axis, directly above each of 

ten choices, the number of choices with which each 

segment is consistent is noted. Thus one can easily 

identify that the user whose choice-behavior is reflected 

in this illustration has two choice-modes – either his 

coefficient is in the intersection of choices 1-5 and 7, 9, 

or in the intersection of choices 2, 4 & 6-10, as in Table 

VI: 

TABLE VI.  ILLUSTRATION OF TWO CHOICE-MODES 

 
 

This capacity to detect multi-mode choice behavior 

implies several things: 

 It is extends the notion of choice consistency: it 

shows that choices can be consistent in some 

situations but not in others; for example, John 

may prefer sad movies on weekends but prefer 

comedies throughout the working-week. 

 Learning (see also: (Rubens, Kaplan, and 

Sugiyama 2011)): a system can implement the 

method outlined above and then learn that a 

specific user has several choice “modes.” The 

system can also learn to detect and predict each 

of these modes. Moreover, it can also learn to 

match specific items to each mode, thus 

increasing the predicted accuracy of item 

placements and suggestions. 

V. EVALUATION 

As a means of evaluation, we used a computer 

application that modeled the system presented here, with 

a randomly generated input. Every decision scenario 

contained ten options, each had two attributes (a andb) 

which were drawn randomly and uniformly between 0 

and 1. We, as testers of the system, knew the parameters 

(A), and so could feed the system with those ten options 

and the selected option (after deciding a-priori the value 

of A). We then tested if the system could estimate the 

missing factor correctly. 

For a pre-decided value of A = 2, and for twenty 

randomly generated decision scenarios, the system came 

up with the following graph, whose x-axis represents the 

estimated value of A, and the y-axis represents the 

likelihood that this value of A was actually chosen (the y-

axis is, in fact, the number of half-spaces that contain that 

point, normalized to lie in [0,1]). As can be seen in Table 

VII, the system’s estimation for A is around 1.98, which 

is fairly close (with a relative error of about 1%) for a 

relatively small database. 

TABLE VII.   

 
 

We then proceeded to evaluate the system’s reaction to 

inconsistencies (Table VIII) Assuming an error rate of 15% 

(in which a random option was selected), it took the 

system 50 scenarios to reach the same 1% relative error. 

It should be made clear that tolerating greater relative 

error (which may be true when we compare different 

utilities, as will be shown shortly) allows the system to 

use far less scenarios to learn the user. 

TABLE VIII.  ILLUSTRATION OF SYSTEM’S RESPONSE TO 

INCONSISTENCIES 

 
As mentioned above, knowing the exact value of the 

parameter is not crucial in order to achieve high 

prediction rates. Repeating the last example, but having 

only 15 trials in the learning phase, the system estimated 

the value 2.138. While it is quite far from the actual value 

of 2, using that estimation the system guessed the user’s 

choice correctly in 97915 out of 10000 randomly 

generated decision scenarios of ten choices each (almost 

98% success rate, assuming the system had to guess the 

right one out of ten options; if we only have five options 

per scenario, the rate gets even higher). 

For the detection of multiple profiles (or “modes”), a 

slight modification for the algorithm has been used. 

Unfortunately, detection of multiple profiles (or 

“modes”) are not as successful, as with randomly chosen 

options, it very likely that a selection made under one 

mode will affect the system’s notion of the other modes, 
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or possible modes around the real mode. For instance, if 

one mode has A = 2, and the other A = 0.3, then the 

system may mistakenly consider any number between 0.3 

and 2 to be a mode. This problem requires further 

research. One possible solution is for the system to, upon 

detection of a mode, ignore all decisions that are 

consistent with the detected mode, and run a second 

“mode analysis” on the remaining scenarios. Yet this can 

be problematic in the sense that it ignores many useful 

scenarios too (for example, A > 0.1 works for both modes 

and hence will be mistakenly deleted). 

It is important to note that in the evaluation presented 

above, the system was fed with completely randomly 

generated options; we conjecture that the system may 

work significantly better if it specifically asks for the user 

to make decisions in tailored scenarios, fit for the 

system’s needs. For example, if the system detects that 

the parameter A may lie between 1 and 3, it will not ask 

if A is greater or smaller than 4, but rather ask if it is 

greater or smaller than 2. An approach similar to the 

binary search algorithm may be used here. 

VI. CONCLUSION 

We presented an outline of a method that locates 

characteristics that reflect the relative weight that a user 

gives to attributes belonging to an item in making utility 

based decisions with regard to that item. The method we 

propose supports decision making in multi-choice 

scenarios. We showed how our method can detect 

preference changes of a single user and users with 

multiple preferences. The method can also serve de-

biasing purposes, such as monitoring for consistent and 

coherent choice patterns. 
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