
Provide a Global Tracking Feature for Person-

Following Robot based on the Kinect Sensor

Zaid A. Mundher
Department of Computer Science, University of Mosul, Iraq

Email: zaidabdulelah@gmail.com

Jiaofei Zhong
Department of Mathematics and Computer Science, University of Central Missouri Warrensburg, USA

Email: zhong@ucmo.edu

Abstract—Person-tracking with mobile robots is a very

active research area which has found success in areas such

as museum guidance and hospital assistance. The ability to

track only the target user and ignore other people in the

robot’s field of view is one of the main issues associated with

the person tracking. This problem can be divided into two

sub-problems: local tracking and global tracking. This

paper introduces a solution to these problems by developing

a body measurement identification system using the skeletal

data from the Kinect sensor. The proposed solution to this

problem is combined with a simple person-following

method that enables the robot to follow the target person. 

Index Terms—global-tracking, kinect sensor, person-

following, person-identification.

I. INTRODUCTION

Person-tracking with a mobile robot is a very active

research topic in the robotics field. Different approaches

have been introduced to solve the person-tracking

problem. One of the more common methods of tracking

people is a vision-based approach which uses a camera as

the main sensor for detecting and tracking people.

According to [1], the tracking problem could be divided

into two sub-problems: local tracking and global tracking.

The tracking problem is considered local as long as the

target person is in the robot’s field of view. In contrast,

the global tracking is initialized when the target person

walks out and re-enters the robot’s field of view. The

aim behind the local and global tracking is to make the

robot able to follow only the target person and ignore the

other people in its field of view.

Recently, the Kinect sensor is being used to

accomplish the person tracking task. Since the Kinect

Windows SDK can recognize up to six users

simultaneously, it is important to identify which person is

being tracked and followed by the robot. Using the

Kinect Windows SDK tracking engine, local tracking

problem could be easily solved using the TrackingId

property. The Kinect Windows SDK tracking engine

Manuscript received October 9, 2013; revised December 2, 2013.

assigns each detected user (skeleton) a unique integer

identifier (TrackingId) which could be used to identify

the tracked person [2]. Unfortunately, the TrackingId

cannot be used to solve the global tracking problem

because when the skeleton-tracking engine loses the

ability to track the user, the TrackingId for that skeleton

is retired. In other words, when the target leaves the

scene and comes back, it will receive a new TrackingId.

To conquer the global tracking problem, a biometric

person identification system based on human body

measurements is introduced by this work. The proposed

solution to this problem is combined with a simple

person-following method that enables the robot to follow

the target person. The major contribution of this work is

to address the global person tracking problem based on

the Kinect for Windows SDK to overcome the limitation

of the Kinect’s field of view.

II. GLOBAL TRACKING PROBLEM

The goal behind the global tracking is to re-identify a

target when it leaves and re-enters the robot’s field of

view. The Kinect for Windows SDK has a reliable

skeleton-tracking engine. However, if the target user is

lost from sight during tracking, the skeleton-tracking

engine cannot recover and correctly resume tracking that

user [3]. The loss of tracking may easily happen since

the Kinect has limited angles for its field of view, which

are 57º horizontally and 43º vertically. Moreover, the

robot may also lose tracking ability of the target when an

obstacle appears between the target and the robot. As a

part of obstacle avoidance, the robot needs to rotate far

enough to avoid the obstacle. This means that the target

will be out of the robot’s field of view, leading to a loss

of the target. When the robot once again faces the target,

it will have to re-detect the target [4]. Re-detecting the

same target will be a problem if there is more than one

person in the field of view because the robot must

continue following the first detected target and ignore the

other. In general, in the global tracking, the person has to

be identified after re-entering the robot’s field of view.

III. PERSON IDENTIFICATION SYSTEMS

322

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing
doi: 10.12720/joace.2.3.322-326

mailto:zaidabdulelah@gmail.com

The main idea behind the biometric systems is to

measure one or more behavioral or physical

characteristics such as voice, gait, or face. In general,

any biometric system has two main phases: enrollment

and matching. In the enrollment phase, the data is

acquired from the individual and stored; in contrast, in

the matching phase the data is re-acquired from the

individual and compared against the stored data to

determine the user’s identity [5].

IV. METHODOLOGY

To address the global tracking problem for the person-

following robot, a long distance person recognition

system needs to be implemented. In long distance person

recognition systems, it is not easy to recognize people

with their exact biometric characteristics such as iris and

face [6], [7]. Therefore, using soft biometric features that

could be measured with low resolution images has great

advantages over other biometric techniques. The

proposed algorithm uses the skeleton joint points to

define three semi-biometric features, as listed in Table I,

to identify the target person.

TABLE I. PERSON CHARACTERISTICS

Nu
mber

Characteristic
Name

#1 Height

#2 Shoulder width

#3 Arm length

A. Person Detection and Tracking

The Kinect provides a skeleton-tracking feature that

allows developers to recognize people and track their

actions. Using depth sensors, the Kinect can recognize

up to six users who are standing between 0.8 to 4.0

meters away (2.6 to 13.1 feet). Two of the detected users

can be tracked in detail with 20 joint points as shown in

Fig. 1.

Figure 1. Kinect skeleton tracking [8]

Each skeleton joint is measured in a three dimensional

plane (X, Y, Z). The X and Y coordinates indicate the

joint location in the plane, while Z indicates how far the

joint is from the Kinect sensor.

B. Data Capturing and Processing

The Kinect for Windows SDK provides a set of APIs

to access to the skeletal data. Moreover, the Kinect for

Windows SDK provides a SkeletonFrameReady event

which fires each time new skeletal data becomes

available for the Kinect sensor. Using this event, skeletal

data can be retrieved from the SkeletonStream. Once the

skeletal data is captured, the proposed system starts

calculating the required characteristics (height, shoulder

width, and arm length) based on the coordinates that are

provided by the Kinect. First of all, the proposed system

calculates the target’s height. In order to measure the

person’s height, the sum of the lengths of each body part

listed in Table II must first be calculated as illustrated in

Algorithm 1 (where Length method implements the

Euclidean distance formula as explained in Section C).

TABLE II. REQUIRED BODY PARTS TO CALCULTE THE PERSON

HEIGHT

Nu
mber

Body Part

#1 Head  Spine

#2 Spine  HipCenter

#3 HipCenter  HipRight

#4 HipRight  KneeRight

#5 KneeRight  AnkleRight

Algorithm 1: GetHeight

declare double Head = skeleton.Joints[JointType.Head]
declare double Spine = skeleton.Joints[JointType.Spine]

declare double HipCenter =

 skeleton.Joints[JointType.HipCenter]
declare double HipRight =

 skeleton.Joints[JointType.HipRight]

declare double KneeRight =
 skeleton.Joints[JointType.KneeRight]

declare double AngleRight =

 skeleton.Joints[JointType.AngleRight]
declare double Head_Spine = Length(Head, Spine)

declare double Spine_HipCenter = Length(Spine, HipCenter)
declare double HipCenter_HipRight =

 Length(HipCenter, HipRight)

declare double HipRight_KneeRight =
 Length(HipRight, KneeRight)

declare double KneeRight_AngleRight =

 Length(KneeRight, AngleRight)
declare double OrigHeight = Head_Spine + Spine_HipCenter

 + HipCenter_HipRight + HipRight_KneeRight +

 KneeRight_AngleRight

Second, the proposed system calculates arm length.

Arm length is calculated by summing the length between

the joint points that are listed in Table III. The algorithm

of measuring arm length is illustrated in Algorithm 2.

TABLE III. REQUIRED BODY PARTS TO CALCULATE THE ARM

LENGTH

Number Body Part

#1 ShoulderRight  ElbowRight
#2 ElbowRight  WristRight

Algorithm 2: GetArmLength

declare double ShoulderRight =

 skeleton.Joints[JointType.ShoulderRight]

declare double ElbowRight =
 skeleton.Joints[JointType.ElbowRight]

declare double WristRight =

 skeleton.Joints[JointType.WristRight]
declare double ShoulderRight_ElbowRight =

 Length(ShoulderRight, ElbowRight)

declare double ElbowRight_WristRight =
 Length(ElbowRight, WristRight)

declare double OrigArmLength =

 ShoulderRight_ElbowRight +
 ElbowRight_WristRight

323

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

Finally, the proposed system calculates shoulders

width. Shoulders width is calculated by measuring the

distance between the right shoulder joint point and the

left shoulder joint point as Algorithm 3 shows.

Algorithm 3: GetShoulderWidth

declare double ShoulderRight = s

 keleton.Joints[JointType.ShoulderRight]

declare double ShoulderLeft =
 skeleton.Joints[JointType.ShoulderLeft]

declare double OrigShoulderWidth = Length(ShoulderRight,

 ShoulderLeft)

Figure 2. An overview of the proposed system

According to the proposed algorithm, the target person

needs to stand 2m away facing the robot in order to be

measured and tracked. Once the system calculates and

stores the required biometric features, the robot starts

following the target person based on the proposed

person-following algorithm, as explained in Section V.

Meanwhile, the algorithm keeps checking the number of

detected people in the robot’s field of view. When the

number of detected people is zero, it means there is no

person in the field of view, and the robot has lost the

ability to track of the target. When the number of

detected people becomes larger than zero, it means that

there is one person (or more) in the field of view. The

robot then measures the required biometric features for

all detected persons and compares the result against the

stored features values. Depending on the result, the robot

will follow the closest matched person if the differences

of the required biometric features with 3% of the stored

data. These steps are explained in Fig. 2 and Algorithm 4.

C. Measure the Distance Between Two Joints

The distance between any two joint points can be

measured using the formula of the Euclidean distance.

According to the Euclidean distance formula, the distance

between any two points in three dimensional planes with

coordinate (X1, Y1, Z1) and (X2, Y2, Z2) is given in (1)

)),,(),,,((111111 ZYXZYXdist (1)

2

12

2

12

2

12)()()(ZZYYXX 

Algorithm 4: Target Re-identification

if(lostTracking = true)

 loop (skeletons)

 HeightList[index] = GetHeight(skeleton)

 ShoulderWidthList[index] = GetShWidth(skeleton)

 ArmLengthList[index] = GetArmLength(skeleton)

 DiffHeightsList[index] = Abs(HeightList[index] –

 OrigHeight)

 DiffShoulderWidthList[index] = Abs(
 ShoulderWidthList [index] –

 OrigShoulderWidthList)

 DiffArmLengthList[index] = Abs(
 ArmLengthList[index] – OrigArmLength)

 index++

 end loop
 loop(DiffHeightsList)

 diff.Add (DiffHeightsList[index] +

 DiffShoulderWidthList[index] +
 DiffArmLengthList[index])

 index++

 end loop
 declare MinimumDiff = Min(diff)

 if (MinimumDiff < thr)

 Start Following

V. PERSON FOLLOWING

The proposed person following system is designed based

on the distance-based control loop approach [9]. The

proposed method calculates the distance between the

robot and the target person every second. The robot

attempts to remain at a distance that does not make the

target person uncomfortable (which is 2m in this work).

Therefore, the robot moves toward the target person

when the distance is greater than 2m. Besides moving

towards the target person, the robot should also be able to

turn in order to follow the target person. Therefore when

the target person steps to the right side or left side, the

robot needs to change its direction based on the right and

left motion parameters in order to keep the target person

in the center of the robot’s view. To calculate the right

and left motion parameters, the algorithm keeps tracking

the right and left shoulders in order to determine the

direction of the target person. Based on the shoulders’

values, the robot will determine if a turn is necessary.

As explained in Algorithm 5, if the right shoulder is

closer to the robot than the left shoulder, the robot

executes a rotate left command. If the left shoulder is

closer to the robot from the right shoulder, the robot

executes a rotate right command. Otherwise, a forward

command is executed.

324

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

Algorithm 5: Person Following Procedure

 function PersonFollowing (distance , Threshold,

 rightShoulderPosition, leftShoulderPosition)

 if (distance > 2 meter) then
 if (abs (rightShoulder - leftShoulder) < Threshold)

 MoveForward

 elseif (leftShoulder > rightShoulder)
 TurnLeft

 else

 TurnRight
 end if

 else

 StopTheRobot

 end if

 end function

VI. IMPLEMENTATION AND RESULTS

In the experiment, a LEGO Mindstorm robot is used.

As shown in Fig. 3, the robot is equipped with a Kinect

sensor.

At the beginning, the target person needs to introduce

himself/herself to the robot so the robot can calculate all

the required biometric features. The robot starts

following the target once the distance is greater than 2m.

The target person was asked to move to the side fast

enough to be lost by the robot. When the target re-enters

the robot’s field of view, the robot was able to re-detect

and re-identified him. As a second step, another person

was asked to enter the robot’s field of view with the

target person after lose tracking. The robot was

successfully able to re-identify and keep following the

target person, while ignoring the second person. The

experiments have shown that the best threshold value is

0.03 where the false rejection rate is zero.

The experiment and all the proposed algorithm’s steps

are illustrated in Table IV.

Figure. 3. The robot

TABLE IV: EXPERIMENT RESULT

Feature Enrolled Lived Differences btw stored and lived features

 P 0 P 1 P 2 P 1 P 2

Height 1.56 1.56 1.60 0 0.04

Shoulder 0.40 0.41 0.43 0.01 0.03
Arm 0.54 0.53 0.58 0.01 0.04

Diff. 0.02 0.11

Min. 0.02 < thr

Result followed ignored

VII. CONCLUSION

One of the main issues associated with the person

tracking is guaranteeing the robot is able to follow only

the target person and ignore all the other people in the

field of its view. Although the Kinect Windows SDK

provides a reliable human tracking solution, it has some

limitations. This paper focuses on the development of a

person tracking system that supports global tracking

based on the Kinect Windows SDK to develop a body

measurement identification system. Although utilizing

semi-biometric features, such as body measurement, is

not a 100% accurate way to identify people, it is still a

powerful tool especially in long-distance identification.

ACKNOWLEDGMENT

This work was financially supported in part by the

Higher Committee for Education Development in Iraq

(HCED).

REFERENCES

 W. Zajdel, Z. Zivkovic, and B. J. A. Krose, “Keeping track of
humans: Have I seen this person before?” in Proc. IEEE

International Conference on Robotics and Automation, 2005, pp.

2081–2086.
 A. Jana, Kinect for Windows SDK Programming Guide, 1st ed.

UK: Packt Publishing, ch. 6, 2012, pp. 183

 B. J. Southwell and G. Fang, “Human object recognition using
colour and depth information from an RGB-D kinect sensor,”

International Journal of Advanced Robotic Systems, vol. 10,

2013.

 W. R. Kulp, “Robotic person-following in cluttered

environments,” M. S. thesis, Department of Electrical

Engineering and Computer Science, Case Western Reserve
University, 2012.

 A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to

Biometrics, Michigan: Springer, 2011, ch. 1, pp. 4.
 A. Sinha, K. Chakravarty, and B. Bhowmick “Person

identification using skeleton information from kinect,” presented

at ACHI 2013: The Sixth International Conference on Advances
in Computer- Human Interactions, Nice, France, February 24,

2013.
 K. Kim, M. Siddiqui, A. François, G. Medioni, and Y. Cho,

“Robust real-time vision modules for a personal service robot,”

presented at the 3rd International Conference on Ubiquitous
Robots and Ambient Intelligence, 2006

 Microsoft. (2012). Skeletal tracking. [Online] Available:

http://msdn.microsoft.com/en-us/library/hh973074.aspx.

325

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

http://en.wikipedia.org/wiki/LEGO

 E. A. Topp and H. I. Christensen, “Tracking for following and
passing persons,” presented at the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Alberta, Canada,

Aug 2-6, 2005.

Zaid A. Mundher is currently a master’s

student in the Department of Mathematics and
Computer Science, University of Central

Missouri. He received his B.S. in Computer

Science from the University of Mosul, Iraq in
2007. He was a Teaching Assistant at the

Department of Computer Science, University of

Mosul, between 2008 and 2011.

Jiaofei Zhong is currently an Assistant
Professor of Computer Science at University of

Central Missouri. She received her PhD in

Computer Science in 2012 and M.S. degree in
2010, both from the University of Texas at

Dallas. Dr. Zhong has served as a peer reviewer

for a number of international conferences and
journals, and has been the Publicity Chair,

Financial Chair, and OCS co-Chair in the

organizing committees of several international conferences. Her
research interests are in the areas of data engineering and information

management, especially in Wireless Communication Environment,

including Data Broadcasting, Vehicle Ad hoc Networks, and Sensor
Database.

326

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

[9]

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Topp,%20E.A..QT.&searchWithin=p_Author_Ids:37281297500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Christensen,%20H.I..QT.&searchWithin=p_Author_Ids:37281307400&newsearch=true

