

302

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing
doi: 10.12720/joace.2.3.302-309

Control of a Muscle Actuated Manipulator using

the NeuraBASE Network Model

Robert Hercus, Kit-Yee Wong, and Kim-Fong Ho
Neuramatix Sdn Bhd, Kuala Lumpur, Malaysia

Email: {hercus, kityee, kfho}@neuramatix.com

Abstract— This paper presents an alternative approach for

the control of an antagonistic muscle actuated manipulator.

The proposed method uses a neuronal network called

NeuraBase to learn the sensor events obtained via a rotary

encoder and to control the motor events of two DC motors, to

rotate the manipulator. A neuron layer called the controller

network links the sensor neuron events to the motor neurons.

The proposed NeuraBase network model (NNM) has

demonstrated its ability to successfully control the

antagonistic muscle manipulator, in the absence of a dynamic

model and theoretical control methods. The controller also

demonstrated its robustness in the adaptive learning of

control with imposed system changes.

Index Terms—neural network, antagonistic muscle, muscle

actuator, control.

I. INTRODUCTION

To date, various types of artificial muscles are available

in the market. The most noticeable muscle type is the

pneumatic artificial muscle (PAM) – a contractile device

operated by pressurized air or hydraulic material. The

muscle serves as an actuator which transfers the pressure

exerted on the inner surface of the bladder into the muscle

length compression. The working operation of the

pneumatic artificial muscle is well documented in [1]-[5].

There are generally three categories of controllers

namely dynamic modelling and control, machine learning

and hybrid method. In dynamic modelling and control,

controllers using the methods of

Proportional-Integral-Derivative (PID), H-infinity control

method, sliding mode control and

Linear-Quadratic-Gaussian (LQG), have been previously

applied to the control of artificial muscle actuated robots

[6]-[11]. Although most of these approaches achieved

good performance, an accurate mathematical

representation for the nonlinear muscle robot is not easily

formulated as extensive knowledge of system dynamics is

required. Machine learning approaches such as fuzzy logic,

artificial neural networks, neuro-fuzzy, recurrent neural

networks, cerebellar model articulation controller (CMAC)

and echo state networks have also been studied extensively

[12]-[18]. The capabilities of these machine learning

methods in mapping non-linearity and in dealing with

Manuscript received August 15, 2013

2013.

uncertainties in system parameters, eliminates the need for

exact mathematical models. The third category consists of

hybrids of the previously described two methods [19]-[23].

They combine the essence of both methods hence the

hybrid controller has good stability control as well as

non-linearity mapping feature of the system input and

output.

In this paper, the trajectory control of a muscle actuated

robotic manipulator using a temporal-based neural network

model named NeuraBase [24] is introduced. Our objective

is to be able to activate the muscles such that the

manipulator/joint moves to a desired position. The

proposed NeuraBase controller does not require any

mathematical model and its online training attribute allows

it to continuously learn to adapt in a changing environment.

The successive interval halving method was used to define

the rotational movement to the target position of the

antagonistic muscle manipulator and the NeuraBase

controller learns to follow the desired trajectory with least

errors. Furthermore, the NeuraBase controller has to learn

to respond according to various rotational movements,

whereby longer movements are executed when the muscle

manipulator is far away from the desired target and shorter

movements are taken as the muscle manipulator draws near

to its desired target.

In this paper, the implementation is not intended to make

direct comparisons with other muscle robot control

methods, but to introduce an alternative and novel

approach. The NeuraBase generic toolbox can be

downloaded at [25].

This paper is organized as follows. Section 2 of this

paper describes the usage of the NeuraBase Network

Model (NNM) as a controller. In section 3, the

experimental test setup is described. Section 4 explains the

online learning logic used with the NNM, and in section 5

experimental results and a discussion are presented to

evaluate the performance of the proposed NNM controller

in terms of trajectory control.

II. NEURA BASE NETWORK MODEL

The NNM is a network data structure that can store

sequences of events. As shown in Fig. 1a, the neurons in a

NNM can be associated temporally or spatially. The basic

unit is an elementary neuron. Each neuron represents an

event. Two neurons can be joined to represent a sequence

of sensor or motor events. The way events are constructed
; revised 0, November 2

in the NNM provides for fast searching and matching. For

instance, as shown in Fig. 1b, if each character is

represented by a sensor neuron (Level 1), the association of

overlapping sensory events can represent words.

The proposed NNM controller for the muscle

manipulator consists of three distinct and fundamental

networks as shown in Fig. 2. The same NNM controller has

been applied in the balancing control of inverted pendulum

[26] as well as the navigation control of UAV [27].

These three networks store different types of events,

namely a) sensor neurons and events - input to the system

(the readout from the encoder); b) motor neurons - outputs

from the system (the motor voltage for driving the DC

motor); c) interneurons - association between two sensor

events (to form a linked sensor neuron), or between a

sensor event and a motor action (to form a controller

neuron). Each type of event builds up an association of

events in their respective network. The sensor network,

motor network and the interneuron network store sensor

neurons and events, motor neurons and events, and

interneurons associations respectively. A simplified data

structure of the neurons used in NNM is described in Table

I. More detailed descriptions of the sensor, motor and

controller neurons are provided in Section 3.

A

B

Figure 1. a) The NeuraBase Network Model where t denotes time

proximity and p denotes spatial proximity; b) Words as sequences of

events constructed using characters.

Figure 2. The fundamental architecture of the network of NeuraBase

used in the trajectory control of the muscle manipulator.

III. EXPERIMENTAL SETUP

The muscle manipulator is an antagonistic muscle

mechanism emulating a simplified version of the human

limb. With one of the links permanently attached to the

base, the muscle mechanism can be considered a planar

R-manipulator. The joint displacement of the muscle

manipulator is controlled by two separate DC geared

motors connected antagonistically to the two links via belts

or “tendons”. Each of these tendons has one end fixed to

the DC motor in one link of the manipulator, and the other

permanently attached to a specific point on the

manipulator’s adjacent link. Fig. 3 depicts the system

components of the experimental setup and Fig. 4 illustrates

the CAD drawing of the muscle robot.

Figure 3. System components of the experimental setup.

Figure. 4. The CAD drawing of the muscle robot.

Figure. 5. The muscle manipulator’s joint rotation mechanism for

clockwise and counter-clockwise motions.

Fig. 5 shows the muscle manipulator’s joint rotation

mechanism for clockwise and counter-clockwise motions.

The counter-clockwise rotation of the muscle manipulator

requires the bottom DC motor to rotate in a

counter-clockwise direction (see Fig. 5a), winding the belt

and therefore contracting the left-side muscle. The top DC

motor needs to rotate in a clockwise direction, unwinding

the attached belt and therefore relaxing the left-side muscle.

The opposite logic applies for rotating the muscle

manipulator in the clockwise direction (see Fig. 5b). One

assumption made in this system is that the elasticity of the

303

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

TABLE I. DATA STRUCTURE OF A NEURON (BASIC)

Field Data Type

Head unsigned int

Tail unsigned int

Successor unsigned int

Frequency/ Weight* signed int

Next

Overshoot/Undershoot Flags*

unsigned int

unsigned short

* Denotes Fields only applicable to the Controller Neuron

belts are negligible, hence any torque applied by the DC

motor will be transferred directly to the adjacent links. The

absolute angle of the joint is obtained through a rotary

encoder attached to the muscle joint.

The muscle manipulator outputs its joint angular

position, and accepts motor voltages as commands to rotate

the joint. The joint angular position output has the

following features:

 Measured via a magnetic encoder with a resolution

of up to ≈1.40625°

 Sampling time as fast as 15ms

 The bottom position is 0°

 The upright position is 180°

 Angle wraps around 360° counter-clockwise

 Movement limited to [130° 230°] (±50° away from

the upright position)

The motor’s commands include the following features:

 Motor voltage (-9V to 9V)

 From 0 to 1024 for rotation to the left

(counter-clockwise)

 From 0 to -1024 for rotation to the right (clockwise)

 Each command unit corresponds to (9/1024)V

A 5-Layer NNM architecture was formulated and

depicted in Fig. 6 as the controller for the muscle

manipulator. It is derived based on the 3-layers architecture

in Fig. 2. The 5-layer NNM architecture consists of the

following layers:

Figure. 6. The Architecture of the 5-Layer NeuraBase used in the

application of Muscle Control.

A. Sensor Layer A

This layer contains events that represent the

combination of observed variables of the past

displacements and the target displacement of the muscle.

The displacement is first translated into segments of

1.40625°/segment, and then further rounded to reduce

neuron consumption:

For instance, segment numbers between ±3 and ±5 are

rounded up to segment number ±5. Segment numbers ±41

to ±80 are rounded up to the segment number ±80.

Consequently, there are 15 sensor neurons in this layer.

This layer builds patterns up to a maximum depth of 3; in

other words, a maximum of two past displacements can be

kept as a sequence while the last element is occupied by the

target displacement. The purpose of using displacements

instead of absolute angular positions to encode sensor

event history is to maintain the relativity of all sensor

elements in the sensor layer.

B. Sensor Layer B

This layer contains events that represent the muscle

joint’s current angular position. This variable serves to

represent an awareness of gravity affecting the muscle at

different joint positions. As with sensor layer A, the joint

position is initially translated into segments of

1.40625°/segment. However, a different rounding

adjustment is applied to the segment number – obtained

values are rounded to the nearest 3 segments.

For instance, segment numbers 137 to 139 will be

rounded to 138, segment numbers 149 to 151 will be

rounded to 150, thereby giving an effective segment

resolution of 4.21875°. Again, the purpose for this

proposed rounding scheme is to reduce neuron

consumption, which in this case results in the sensor layer

having less than 40 sensor neurons. This layer only consists

of patterns of length 1 as the history of motion has already

been encoded in sensor layer A.

C. Target State Interneuron Layer

The target state event represents the link between sensor

layers A and B (joint’s current angular position linked to

the sequence of its angular displacements). The nodes in

this layer are linked nodes, representing nodes with heads

and tails from two different layers (Sensor Layer A –

Sensor Layer B).

D. Motor Layer

Each motor event represents a motor voltage, which

corresponds to the resultant torque exerted on the muscle.

This layer consists of patterns of length 1; representing the

single motor action associated with each controller event.

Each motor segment corresponds to an output voltage of

(9×n/32) V to the motor, therefore there are 65 motor

neurons in this layer. Due to friction induced by the drive

belts which hampers the muscle's ability to contract in the

opposite direction, the theoretically non-actuating motor

has to be given a constant counter-friction voltage of

-1.35V.

E. Controller Layer

The controller event represents the link between the

sensor combination (target state) layer and motor layer (the

voltage required of the motor to move the muscle joint to

the target angular displacement given its current angular

position sequence). The nodes in this layer are linked

nodes, representing nodes with heads and tails from two

different layers (Target State Inter-neuronal Layer - Motor

Layer).

Fig. 7A depicts the neuron structure of a sample sensor

layer A neuron (named C) within the sensor network

representing the sequence of sensor values C = {20, 10, 2}.

The neuron A (head of C) represents the sensor sequence of

{20, 10} and the neuron B (tail of C) represents the sensor

sequence of {10, 2}. Neuron D represents a set of adjacent

304

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

neurons of C which can be a sequence of sensor segments

{20, 10, 5} and E represents the target state interneuron for

C linking to a specific sensor layer B neuron. Fig. 7B

depicts the neuron structure of a sample sensor layer B

neuron (F) within the sensor B network. The neuron G

(next of F) contains the next sensor neuron within the same

network.

Figure 7. A) The structure of a sensor A event; B) The structure of a

sensor B event; C) The structure of a motor event; D) The structure of a

target state interneuron event; E) The structure of a controller neuron.

Each motor neuron represents an output voltage of

(9×n/32) V to the motor. Fig. 7C depicts the neuron

structure of a sample motor neuron (H) within the motor

network. The neuron I (next of H) contains the next motor

neuron within the same network. Fig. 7D depicts the

neuron structure of a sample target state interneuron

(named J) within the target state interneuronal network and

it represents the interneuron J = [{20, 10, 2}, 129]. The

head of J is the neuron C (of sensor layer A), and its tail is

the neuron F (of sensor layer B). Neuron L represents a

specific controller neuron. Fig. 7E depicts the neuron

structure of a sample controller neuron (L) within the

controller network with the neuron J (target state

interneuron) as its head and the neuron H (motor neuron)

as its tail.

IV. LEARNING LOGIC

The long-term goals for the joint are set to be anywhere

between ±50° from the upright position. For each

long-term goal, there will be a set of short-term goals

defining the target displacements for the muscle controller

during each time interval. The short-term targets are set

according to Table II (note that each displacement segment

corresponds to a multiple of 1.40625°).

Figure. 8. The overall process flow of the NNM controller.

The overall process flow of the NNM controller is

depicted in Fig. 8. Given a long-tern goal, the NNM first

acquires the muscle manipulator’s current joint position

and validates whether the muscle manipulator has reached

the target, if not, a new short term target will be computed

using the interval halving method with the equation

newtarget = (oldtarget – currentposition)/2. The control

sampling time was set at 150ms. Referring to the Fig. 8, the

NeuraBase muscle control block contains three main

functions: predict, generate educated guess and feedback

functions. In the predict function, the NNM controller will

search for the matching motor patterns in the controller

layer given the interneuron of the sequence of past

displacements and the current short-term target

(interneuron J in Fig. 7E). If a controller neuron exists in

the controller layer which has a head pointed the

aforementioned given targetstate interneuron (interneuron

J), the NNM controller will retrieve the list of linked motor

actions (the tail of the controller neuron L). Subsequently,

the list of linked motor actions is sorted according to the

linked frequency, and the motor action which has the

highest frequency as well as greater than the preset

threshold would be selected as the recommended motor

action. If none of the linked motor actions passes the preset

threshold, the generate educated guess function will be

called upon to recommend a motor action interpolated

from those found suitable for its neighboring positions. If

all else fails, a random motor value bounded by the

system’s past experience of known overshooting and

undershooting motor actions will be suggested.

Once the recommended force has been determined, the

NNM controller will execute the motor action. The

feedback function will then monitor the muscle

manipulator’s position to evaluate whether it has achieved

the given target displacement after 150ms. If the objective

has been met, the controller neuron linking the targetstate

interneuron with motor action is given a reward of +3. On

the contrary, if the actual displacement is less than the

target displacement, the NNM controller penalizes the

controller neuron by -2, as well as creating a new controller

neuron which links the targetstate interneuron with [motor

305

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

TABLE II. DATA STRUCTURE OF A NEURON (BASIC)

Remaining Distance to Goal (segments) Short-term Target

Distance (segments)

≥ 40 20

[20 40) 10

[10 20) 5

[5 10) 2

[2 5) 1

[1 2) 1

action + 1] in the controller network and gives it an

incentive of +4. Also, the NNM controller sets the

undershoot flag of the controller neuron to true. On the

other hand, if actual displacement is greater than the target

displacement, the NNM controller penalizes the controller

neuron by -2 and creates a new controller neuron which

links the targetstate interneuron with [motor action - 1] in

the controller network and gives it an incentive of +4. Also,

the NNM controller sets the overshoot flag of the

controller neuron to true.

The feedback function is a mechanism that strengthens

controller actions that have successfully achieve the

objectives set during a control cycle. Good controller

actions that help the muscle controller achieve its

objectives are rewarded. Bad controller actions that have

failed to help the muscle controller achieve its objectives

are penalised. The strength of each controller neuron is

represented by its trained weight; hence, the controller

neuron with the highest weight will be the most reliable

prediction because it is the accumulated result of learning,

using both positive and negative feedbacks from past trials.

The association of the interneuron and motor neuron in the

controller network is a reinforced learning process,

whereby positive and negative feedbacks dictate how the

learning takes place by tuning the weight of the controller

neurons. A positive feedback is given if the muscle

manipulator managed to reach within the target

displacement, upon which, the weight of the controller

neuron is incremented by 3. The more the controller

neuron experiences positive feedbacks for its motor

predictions, the stronger the link coupling will be, thereby

resulting in a stronger positive memory of the respective

motor action. A negative feedback is evoked if the muscle

manipulator fails to reach the target displacement, upon

which, the weight of the controller neuron is decremented

by 2, thus reducing the coupling strength of that link.

Alternatively, the NNM controller will create a new

controller neuron linking the sensor event to the motor

neuron. Eventually, a network of almost all possible sensor

events associated with motor actions will be stored within

NeuraBase, and the controller neurons linking sensor

events to the right motor actions will have higher weights

compared to those linking sensor events to incorrect motor

actions.

This motor range is bounded by motor neurons linked to

previously used controller neurons which have either been

flagged as overshooting and/or undershooting controller

neurons. Each time the overshoot/undershoot flag of a

controller neuron is set, the range of potential solutions

becomes smaller, with the controller neuron’s linked motor

neuron as the new upper or lower boundary of the set. This

method helps the controller narrow down its choices of

approximately correct motor actions for the sensor event

more quickly, compared to the controller having to attempt

all motor neurons before finding a suitable one.

V. EXPERIMENTAL RESULTS

There are three performance metrics used in this

experiment:

 Overshoot: intended to identify the muscle’s ability

to reach the goal segment without overshooting.

The overshoot/undershoot is computed one

time-step after the muscle enters or overshoots the

coarse goal region (resolution of 4.2°) for the very

first time.

 Excess Motion: Intended to identify the controller’s

ability to bring the muscle joint to the middle of a

goal segment and maintain its position for one

second. Performance is gauged based the amount of

excess distance travelled before completing a trial.

 Average Tracking Speed: intended to identify the

NNM controller’s ability to bring the muscle joint to

its coarse goal segment while obeying the smooth

trajectory short-term goal rules. This average speed

is computed from the absolute angular distance

between the initial and goal segments divided by the

time taken to achieve this motion.

A. Training Without External Load

As shown in Fig. 9, it has been observed that with

training, the muscle manipulator was able to reach the goal

segment without overshooting much, eventually reaching

an average overshoot of approximately 0.8° after 25,000

trials. However, it is worth noting that the curve had

actually begun to saturate around 15,000 trials, wherein it

recorded an average overshoot of 1.0°. The performance

improvement can also be attributed to the NNM controller

in managing to achieve the short-term goals defined with

training, which had been set to ensure the muscle joint

reaches the middle of its goal segment at low speeds. In the

histogram presentation of the overshoot distribution (see

Fig. 10), it has been observed that the overshoots ranged

between ±1.40625° almost 80% of the time after training

compared to a ~20% at the beginning of training.

Overshooting between ±1.40625° is reasonable

considering that position segments are stored at a

resolution of 4.21875° in NNM.

Figure 9. Plot of the muscle control system’s excess motion for each trial.

The blue dots represent the overshoots recorded in each trial, while the

black line denotes a moving average curve of 255 for these points.

It has also been observed that the average excess motion

decreased with training (see Fig. 12), which suggests that

the amount of oscillations had been reduced as the muscle

controller learns to effectively maintain the muscle within

the goal region for 1 second. As with the overshoot plot,

the excess motion performance appears to have begun

saturating at the 15,000 trial mark with an average value of

~4.5° and finally recording an average of ~4° after almost

306

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

25,000 trials. The amount of neurons consumed during the

training process has been observed to be high, at around

105,000. However, based on the plot in Fig. 11, the overall

neuron growth appears to have slowed down considerably.

The controller network takes up majority of the resources

in NNM as its neuron consumption currently stands at

about 70,000, approximately 6 times its distant second,

which is the Target State Inter-neuronal Network with

~13,000 neurons.

Figure 10. Histogram of the muscle control system’s overshoot

distribution every 1,000 trials. Each coloured bar represents the

percentage of occurrence of its corresponding overshoot value. The

maximum overshoot value is saturated to 9.84° in this chart.

Figure 11. Total neuron usage vs. number of trials.

Figure 12. Plot of the muscle control system’s excess motion for each

trial. The blue dots represent the excess motions recorded in each trial,

while the black line denotes a moving average curve of 255 for these

points.

Based on the trajectory targets set, the muscle should

exhibit higher average speeds when it is targeting goals far

away compared to nearer ones. To illustrate this, results of

average tracking speeds have been split into four

categories, as shown in Fig. 13. Results suggest that the

muscle controller managed to move the joint to its target

segment in smoother motions with training. Compared to

the beginning of training when the average muscle speeds

were mostly around 70°/s, it has been observed that the

trained average muscle speeds are approximately ~30°/s,

~40°/s and ~50°/s for targeting short, moderate and long

distances respectively. As shown in Fig. 13, during the

beginning of training, the motor actions used to bring the

muscle to its target segment have not been trained yet.

Therefore, especially for the short distance category, even

though there already existed speed-distance patterns

whereby the average speed appeared to be proportional to

the target’s distance, for most parts the muscle was moving

at high speeds, introducing many overshoots in the process,

which would be explained further in the next section.

Towards the end of training, it has been observed that the

average muscle speed for targeting short distance goals

have drastically lowered to match the intended trajectory,

whilst maintaining the speed-distance relationship. For one

of the medium distances category (Fig. 13c), there was a

shift in the average speed distribution’s slope. This can be

attributed to the muscle initially overshooting by large

margins whenever it crossed the top position (segment 129

or 180°), therefore the average muscle speeds for the

shorter medium distances were higher. The controller later

learned to reduce these occurences by significantly slowing

down the muscle when it closes in on the target, which

resulted in a flatter distribution slope, better resembling the

one in Fig. 13a. A similar observation could be made for

the other two categories, except that the changes in speed

distribution as well as decreases in average speed do not

appear as obvious. Overall, the positive relationship

between the average muscle speed and the distance

between the initial and target segments was maintained at

the end of the training duration, however at much lower

speeds compared to the first thousand trials. This suggests

that the muscle controller has learned to better correspond

to the short-term goals, where fast motions are executed

when the muscle is far away from the target and slower

ones are executed as the muscle draws near its target.

Figure 13. Histograms showing the muscle’s average speed in tracking

its target between

3 and 69 segments away regardless of its rotational

direction for the first and final

1,000 trials of each training phase. Each

coloured bar represents the average muscle speed recorded for the muscle

to reach a goal located n-segments away from its initial position.

B. Training with External Load

Another experiment was performed to further

demonstrate the effectiveness and adaptive behaviour of

the NNM controller when changes were introduced to the

muscle manipulator. We tested the NNM controller by

attaching a 50gram weight to the centre of an 18gram rod at

a distance of 13cm away from the joint. In a separate

307

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

experiment, a 50gram weight was attached to centre of a

35gram rod at a distance of 19cm away from the muscle

joint. In this experiment, the muscle manipulator was

executed at a slower speed compared to the former because

sufficient torque is required to lift the attached weight. The

experimental results are presented in Fig. 14-17. As shown

in Fig. 14, due to the manipulator’s generally slow speeds,

it is not easy for the muscle to overshoot, though it has been

observed that the occurrence was notably higher during the

initial stages of training. After training though, additions of

weights did not seem to have much effect, only recording

negligibly small bumps in the averages which were then

reduced once again after training. Therefore, the average

overshoot stands at 0° after 15,000 trials. This

improvement in performance, though slight, can also be

attributed to NeuraBase managing to achieve the

short-term goals defined with training, which have been set

to ensure the muscle joint reaches the middle of its goal

segment at low speeds. In the histogram presentation of the

overshoot distribution as shown in Fig. 15, it has been

observed that the overshoots ranged between ±1.40625°
almost 100% of the time after training compared to a ~75%

at the beginning of training. Overshooting between

±1.40625° is reasonable considering that position

segments are stored at a resolution of 4.21875° in

NeuraBase. Also, it can be seen that the addition of weights

increased the amount of overshoots even though they are

mostly only 1.40625° ones. However, with training the

distribution returned to approximately its original

distribution before the weights were added, which can be

an evidence of the effectiveness of the training. The

amount of neurons consumed during the training process

has been observed to experience a slight bump with each

training phase, as shown in Fig. 16. This situation can be

explained by the change in the muscle’s inertia when the

weights were placed or shifted along the muscle link,

which resulted in different sequences of the muscle joint

positions, eventually encoded within the Sensor Layer A

and propagated all the way down to the Controller Network.

As shown in Fig. 17, the average excess motion did not

appear to be significantly affected by the addition of

weights partway through training, though it has been

observed that the average did experience slight jumps

when the weights were first placed or shifted on the

hardware.

Figure 14. Plot of the muscle control system’s excess motion for each

trial. The blue dots represent the overshoots recorded in each trial, while

the black line denotes a moving average curve of 50 for these points. The

green line denotes the point when the weight is attached 13cm from the

pivot whereas the red line denotes the point when the weight is attached

19cm from the pivot.

Figure 15. Histogram of the muscle control system’s overshoot

distribution every 1,000 trials. Each coloured bar represents the

percentage of occurrence of its corresponding overshoot value. The

maximum overshoot value is saturated to 9.84° in this chart.

Figure 16. Total neuron usage vs. number of trials. The green line denotes

the point when the weight is attached 13cm from the pivot whereas the

red line denotes the point when the weight is attached 19cm from the

pivot.

Figure. 17. Plot of the muscle control system’s excess motion for each

trial. The blue dots represent the excess motions recorded in each trial,

while the black line denotes a moving average curve of 255 for these

points.

REFERENCES

[1] C. P. Chou and B. Hannaford, “Measurement and modelling of

McKibben pneumatic artificial muscles,” IEEE Transactions on

Robotics and Automation, vol. 12, no. 1, pp. 90-102, 1996.

[2] F. Daerden and D. Lefeber, “Pneumatic artificial muscles: actuator

for robotics and automation,” European Journal of Mechanical

and Environmental Engineering, vol. 47, pp. 10-21, 2002.

[3] D. G. Caldwell, A. Razak, and M. J. Goodwin, “Braided pneumatic

muscle actuators,” in Proc. Conf. Rec. IFAC Conference on

Intelligent Autonomous Vehicles, 1993, pp. 507-512.

[4] B. Tondu and P. Lopez, “Modelling and control of McKibben

artificial muscle robot actuator,” IEEE Control System Magazine,

vol. 20, pp. 15-38, 2000.

[5] M. Balara and A. Petik, “The properties of the actuators with

pneumatic artificial muscles,” Journal of Cybernetics and

Informatics, vol. 4, pp. 1-15, 2004.

[6] A. Pujana-Arrese, A. Mendizabal, J. Arenas, R. Prestamero, and J.

Landaluze, “Modelling in modelica and position control of a 1-DoF

set-up powered by pneumatic muscles,” Mechatronics, vol. 20, no.

5, pp. 535-552, 2010.

308

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

[7] H. P. H. Anh, “Online tuning gain scheduling MIMO neural PID

control of the 2-axes pneumatic artificial muscle (PAM) robot

arm,” Expert Systems with Applications, vol. 37, no. 9, pp.

6547-6560, 2010.

[8] S. Oh, V. Salvucci, and Y. Hori, “Development of simplified statics

of robot manipulator and optimized muscle torque distribution

based on the statics,” in Proc. Conf. American Control Conference,

2011, pp. 4099-4104.

[9] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal

control for redundantly actuated arms,” in Proc. Conf.

International Conference on Simulation of Adaptive Behavior,

2008, pp. 93-102.

[10] M. Van Damme, B. Vanderborght, R. Van Damme, et. al.,

“Proxy-Based sliding mode control of a manipulator actuated by

Pleated Pneumatic Artificial Muscles,” in Proc .Conf. IEEE

Internal Conference on Robotics and Automation, 2007, pp.

4355-4360.

[11] G. Tao, X. Zhu, and J. C, “Modeling and controlling of parallel

manipulator joint driven by pneumatic muscles,” Journal of

Mechanical Engineering, vol. 18, no. 4, pp. 537-541, 2005.

[12] H. Zhao and M. Sugisaka, “Simulation study of CMAC control for

the robot joint actuated by McKibben muscles,” Applied

Mathematics and Computation, vol. 203, pp. 457-462, 2008.

[13] K. K. Ahn and H. P. H. Anh, “Design and implementation of an

adaptive recurrent neural networks (ARNN) controller of the

pneumatic artificial muscle (PAM) manipulator,” Mechatronics,

vol. 19, pp. 816-828, 2009.

[14] T. Leephakpreeda, “Fuzzy logic based PWM control and neural

controlled-variable estimation of pneumatic artificial muscle

actuators,” Expert Systems with Applications, vol. 38, no. 6, pp.

7837-7850, 2011.

[15] K. Xing, Y. Wang, and Q. Zhu, “Modeling and control of

McKibben artificial muscle enhanced with echo state networks,”

Control Engineering Practice, vol. 20, no. 5, pp. 477-488, 2012.

[16] L. D. Khoa and K. K. Ahn, “Synchronization algorithm for

controlling 3-R planar parallel pneumatic artificial muscle robot,”

in Proc. Conf. International Conference on Control, Automation

and Systems, 2011, pp. 1588-1593.

[17] T. Ozaki, T. Suzuki, T. Furuhashi, and S. Okuma, “Trajectory

control of robotic manipulators using neural networks,” IEEE

Transactions on Industrial Eletronics, vol. 38, no. 3, pp. 195-202,

1911.

[18] R. Shadmehr, “Learning virtual equilibrium trajectories for control

of a robot arm,” Neural Computation, vol. 2, no. 4, pp. 436-446,

1990.

[19] T. D. C. Thanh and K. K. Ahn, “Nonlinear PID control to improve

the control performance of 2 axes pneumatic artificial muscle

manipulator using neural network,” Mechatronics, vol. 16, no. 9,

pp. 577-587, 2006.

[20] L. D. Khoa and K. K. Ahn, “Synchronization algorithm for

controlling 3-R planar parallel pneumatic artificial muscle robot,”

in Proc. Conf. Rec. Internal Conference on Control, Automation

and Systems, 2011, pp. 1588-1593.

[21] A. Rezoug, M. Hamerlain, and M. Tadjine, “Decentralized RBFNN

type-2 fuzzy sliding mode controller for robot manipulator driven

by artificial muscles,” International Journal of Advanced Robotic

Systems, vol. 9, pp. 1-12, 2012.

[22] X. Chang and J. H. Lilly, “Fuzzy control for pneumatic muscle

tracking via evolutionary tuning,” Intelligent Automation and Soft

Computing, vol. 9, no. 4, pp. 227-244, 2003.

[23] T. D. C. Thanh and K. K. Ahn, “Nonlinear PID control to improve

the control performance of 2 axes pneumatic artificial muscle

manipulator using neural network,” Mechatronics, vol. 16, no. 9,

pp. 577-587, 2006.

[24] R. G. Hercus, “Neural networks with learning and expression

capability,” U.S. Patent 7412426 B2, 2008.

[25] NeuraBase Generic Toolbox. [Online]. Available:

http://www.neuramatix.com

[26] R. Hercus, K.-Y. Wong, and K.-F. Ho, “Balancing of a simulated

inverted pendulum using the neurabase network model,” LNCS, vol.

8131, pp. 527-536, 2013.

[27] R. Hercus, H.-S. Kong, and K.-F. Ho, “Control of an unmanned

aerial vehicle using a neuronal network,” LNCS, ICONIP, Part II,

vol. 8227, pp. 605–615, 2013.

Robert Hercus received the B.S. degree in

information science from Monash University,

Australia. He is an adjunct professor in the

Department of Computer Science at the University

of Malaysia Terengganu, Malaysia.

He has more than 40 years of experience in the

field of information science and technology. He is

the founder of Neuramatix Group of Companies

and the inventor of NeuraBase. Robert is also the

founder and Managing Director of Malaysian Genomics Resource Centre

Berhad (MGRC).

Kit-Yee Wong received the B.E. degree in

mechatronics engineering from Monash

University Malaysia in 2011.

She joined the robotics department of Neuramatix

Sdn. Bhd. as a mechatronics engineer and has

been with them since 2012. Her current research

interests include robotic manipulators, biped

robots and intelligent systems.

Kim-Fong Ho received the B.S. degree in

mechanical engineering from Utah State

University, Logan, in 1998, and the M.E. degree

in mechanical engineering in 2000 from the same

university.

He is presently the Neural System Manager at the

Neuramatix Sdn Bhd, Kuala Lumpur, Malaysia.

His research interests include intelligent control

of robotics, text mining and contextual mining.

309

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing

