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Abstract— This paper presents an alternative approach for 

the control of an antagonistic muscle actuated manipulator. 

The proposed method uses a neuronal network called 

NeuraBase to learn the sensor events obtained via a rotary 

encoder and to control the motor events of two DC motors, to 

rotate the manipulator. A neuron layer called the controller 

network links the sensor neuron events to the motor neurons. 

The proposed NeuraBase network model (NNM) has 

demonstrated its ability to successfully control the 

antagonistic muscle manipulator, in the absence of a dynamic 

model and theoretical control methods. The controller also 

demonstrated its robustness in the adaptive learning of 

control with imposed system changes.  

 

Index Terms—neural network, antagonistic muscle, muscle 

actuator, control.  

 

I. INTRODUCTION 

To date, various types of artificial muscles are available 

in the market. The most noticeable muscle type is the 

pneumatic artificial muscle (PAM) – a contractile device 

operated by pressurized air or hydraulic material. The 

muscle serves as an actuator which transfers the pressure 

exerted on the inner surface of the bladder into the muscle 

length compression. The working operation of the 

pneumatic artificial muscle is well documented in [1]-[5].    

There are generally three categories of controllers 

namely dynamic modelling and control, machine learning 

and hybrid method. In dynamic modelling and control, 

controllers using the methods of 

Proportional-Integral-Derivative (PID), H-infinity control 

method, sliding mode control and 

Linear-Quadratic-Gaussian (LQG), have been previously 

applied to the control of artificial muscle actuated robots 

[6]-[11]. Although most of these approaches achieved 

good performance, an accurate mathematical 

representation for the nonlinear muscle robot is not easily 

formulated as extensive knowledge of system dynamics is 

required. Machine learning approaches such as fuzzy logic, 

artificial neural networks, neuro-fuzzy, recurrent neural 

networks, cerebellar model articulation controller (CMAC) 

and echo state networks have also been studied extensively 

[12]-[18]. The capabilities of these machine learning 

methods in mapping non-linearity and in dealing with 
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uncertainties in system parameters, eliminates the need for 

exact mathematical models. The third category consists of 

hybrids of the previously described two methods [19]-[23]. 

They combine the essence of both methods hence the 

hybrid controller has good stability control as well as 

non-linearity mapping feature of the system input and 

output.  

In this paper, the trajectory control of a muscle actuated 

robotic manipulator using a temporal-based neural network 

model named NeuraBase [24] is introduced. Our objective 

is to be able to activate the muscles such that the 

manipulator/joint moves to a desired position. The 

proposed NeuraBase controller does not require any 

mathematical model and its online training attribute allows 

it to continuously learn to adapt in a changing environment. 

The successive interval halving method was used to define 

the rotational movement to the target position of the 

antagonistic muscle manipulator and the NeuraBase 

controller learns to follow the desired trajectory with least 

errors. Furthermore, the NeuraBase controller has to learn 

to respond according to various rotational movements, 

whereby longer movements are executed when the muscle 

manipulator is far away from the desired target and shorter 

movements are taken as the muscle manipulator draws near 

to its desired target.  

In this paper, the implementation is not intended to make 

direct comparisons with other muscle robot control 

methods, but to introduce an alternative and novel 

approach. The NeuraBase generic toolbox can be 

downloaded at [25].  

This paper is organized as follows. Section 2 of this 

paper describes the usage of the NeuraBase Network 

Model (NNM) as a controller. In section 3, the 

experimental test setup is described. Section 4 explains the 

online learning logic used with the NNM, and in section 5 

experimental results and a discussion are presented to 

evaluate the performance of the proposed NNM controller 

in terms of trajectory control.  

II. NEURA BASE NETWORK MODEL 

The NNM is a network data structure that can store 

sequences of events. As shown in Fig. 1a, the neurons in a 

NNM can be associated temporally or spatially. The basic 

unit is an elementary neuron. Each neuron represents an 

event. Two neurons can be joined to represent a sequence 

of sensor or motor events. The way events are constructed 
; revised 0, November 2



  

in the NNM provides for fast searching and matching. For 

instance, as shown in Fig. 1b, if each character is 

represented by a sensor neuron (Level 1), the association of 

overlapping sensory events can represent words. 

The proposed NNM controller for the muscle 

manipulator consists of three distinct and fundamental 

networks as shown in Fig. 2. The same NNM controller has 

been applied in the balancing control of inverted pendulum 

[26] as well as the navigation control of UAV [27].  

These three networks store different types of events, 

namely a) sensor neurons and events - input to the system 

(the readout from the encoder); b) motor neurons - outputs 

from the system (the motor voltage for driving the DC 

motor); c) interneurons - association between two sensor 

events (to form a linked sensor neuron), or between a 

sensor event and a motor action (to form a controller 

neuron). Each type of event builds up an association of 

events in their respective network. The sensor network, 

motor network and the interneuron network store sensor 

neurons and events, motor neurons and events, and 

interneurons associations respectively. A simplified data 

structure of the neurons used in NNM is described in Table 

I. More detailed descriptions of the sensor, motor and 

controller neurons are provided in Section 3. 

A  

B  

Figure 1.  a) The NeuraBase Network Model where t denotes time 

proximity and p denotes spatial proximity; b) Words as sequences of 

events constructed using characters. 

 

Figure 2.  The fundamental architecture of the network of NeuraBase 

used in the trajectory control of the muscle manipulator. 

  

  

  

  

  

  

 

 

 

 

III. EXPERIMENTAL SETUP 

The muscle manipulator is an antagonistic muscle 

mechanism emulating a simplified version of the human 

limb. With one of the links permanently attached to the 

base, the muscle mechanism can be considered a planar 

R-manipulator. The joint displacement of the muscle 

manipulator is controlled by two separate DC geared 

motors connected antagonistically to the two links via belts 

or “tendons”.  Each of these tendons has one end fixed to 

the DC motor in one link of the manipulator, and the other 

permanently attached to a specific point on the 

manipulator’s adjacent link. Fig. 3 depicts the system 

components of the experimental setup and Fig. 4 illustrates 

the CAD drawing of the muscle robot. 

 

Figure 3.  System components of the experimental setup. 

 

Figure. 4.  The CAD drawing of the muscle robot. 

 

Figure. 5.  The muscle manipulator’s joint rotation mechanism for 

clockwise and counter-clockwise motions. 

Fig. 5 shows the muscle manipulator’s joint rotation 

mechanism for clockwise and counter-clockwise motions. 

The counter-clockwise rotation of the muscle manipulator 

requires the bottom DC motor to rotate in a 

counter-clockwise direction (see Fig. 5a), winding the belt 

and therefore contracting the left-side muscle. The top DC 

motor needs to rotate in a clockwise direction, unwinding 

the attached belt and therefore relaxing the left-side muscle. 

The opposite logic applies for rotating the muscle 

manipulator in the clockwise direction (see Fig. 5b). One 

assumption made in this system is that the elasticity of the 
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TABLE I. DATA STRUCTURE OF A NEURON (BASIC)

Field Data Type

Head unsigned int

Tail unsigned int

Successor unsigned int

Frequency/ Weight* signed int 

Next

Overshoot/Undershoot Flags*

unsigned int

unsigned short

* Denotes Fields only applicable to the Controller Neuron



  

belts are negligible, hence any torque applied by the DC 

motor will be transferred directly to the adjacent links. The 

absolute angle of the joint is obtained through a rotary 

encoder attached to the muscle joint. 

The muscle manipulator outputs its joint angular 

position, and accepts motor voltages as commands to rotate 

the joint. The joint angular position output has the 

following features: 

 Measured via a magnetic encoder with a resolution 

of up to ≈1.40625° 

 Sampling time as fast as 15ms 

 The bottom position is 0° 

 The upright position is 180° 

 Angle wraps around 360° counter-clockwise 

 Movement limited to [130° 230°] (±50° away from 

the upright position) 

The motor’s commands include the following features: 

 Motor voltage (-9V to 9V) 

 From 0 to 1024 for rotation to the left 

(counter-clockwise) 

 From 0 to -1024 for rotation to the right (clockwise) 

 Each command unit corresponds to (9/1024)V 

A 5-Layer NNM architecture was formulated and 

depicted in Fig. 6 as the controller for the muscle 

manipulator. It is derived based on the 3-layers architecture 

in Fig. 2. The 5-layer NNM architecture consists of the 

following layers: 

 

Figure. 6.  The Architecture of the 5-Layer NeuraBase used in the 

application of Muscle Control. 

A. Sensor Layer A 

This layer contains events that represent the 

combination of observed variables of the past 

displacements and the target displacement of the muscle. 

The displacement is first translated into segments of 

1.40625°/segment, and then further rounded to reduce 

neuron consumption: 

 

For instance, segment numbers between ±3 and ±5 are 

rounded up to segment number ±5. Segment numbers ±41 

to ±80 are rounded up to the segment number ±80. 

Consequently, there are 15 sensor neurons in this layer. 

This layer builds patterns up to a maximum depth of 3; in 

other words, a maximum of two past displacements can be 

kept as a sequence while the last element is occupied by the 

target displacement. The purpose of using displacements 

instead of absolute angular positions to encode sensor 

event history is to maintain the relativity of all sensor 

elements in the sensor layer. 

B. Sensor Layer B 

This layer contains events that represent the muscle 

joint’s current angular position. This variable serves to 

represent an awareness of gravity affecting the muscle at 

different joint positions. As with sensor layer A, the joint 

position is initially translated into segments of 

1.40625°/segment. However, a different rounding 

adjustment is applied to the segment number – obtained 

values are rounded to the nearest 3 segments. 

 

For instance, segment numbers 137 to 139 will be 

rounded to 138, segment numbers 149 to 151 will be 

rounded to 150, thereby giving an effective segment 

resolution of 4.21875°. Again, the purpose for this 

proposed rounding scheme is to reduce neuron 

consumption, which in this case results in the sensor layer 

having less than 40 sensor neurons. This layer only consists 

of patterns of length 1 as the history of motion has already 

been encoded in sensor layer A.  

C. Target State Interneuron Layer 

The target state event represents the link between sensor 

layers A and B (joint’s current angular position linked to 

the sequence of its angular displacements). The nodes in 

this layer are linked nodes, representing nodes with heads 

and tails from two different layers (Sensor Layer A – 

Sensor Layer B).  

D. Motor Layer 

Each motor event represents a motor voltage, which 

corresponds to the resultant torque exerted on the muscle.  

This layer consists of patterns of length 1; representing the 

single motor action associated with each controller event. 

Each motor segment corresponds to an output voltage of 

(9×n/32) V to the motor, therefore there are 65 motor 

neurons in this layer. Due to friction induced by the drive 

belts which hampers the muscle's ability to contract in the 

opposite direction, the theoretically non-actuating motor 

has to be given a constant counter-friction voltage of 

-1.35V.  

E. Controller Layer 

The controller event represents the link between the 

sensor combination (target state) layer and motor layer (the 

voltage required of the motor to move the muscle joint to 

the target angular displacement given its current angular 

position sequence). The nodes in this layer are linked 

nodes, representing nodes with heads and tails from two 

different layers (Target State Inter-neuronal Layer - Motor 

Layer).  

Fig. 7A depicts the neuron structure of a sample sensor 

layer A neuron (named C) within the sensor network 

representing the sequence of sensor values C = {20, 10, 2}. 

The neuron A (head of C) represents the sensor sequence of 

{20, 10} and the neuron B (tail of C) represents the sensor 

sequence of {10, 2}. Neuron D represents a set of adjacent 
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neurons of C which can be a sequence of sensor segments 

{20, 10, 5} and E represents the target state interneuron for 

C linking to a specific sensor layer B neuron. Fig. 7B 

depicts the neuron structure of a sample sensor layer B 

neuron (F) within the sensor B network. The neuron G 

(next of F) contains the next sensor neuron within the same 

network. 

 

Figure 7. A) The structure of a sensor A event; B) The structure of a 

sensor B event; C) The structure of a motor event; D) The structure of a 

target state interneuron event; E) The structure of a controller neuron. 

Each motor neuron represents an output voltage of 

(9×n/32) V to the motor. Fig. 7C depicts the neuron 

structure of a sample motor neuron (H) within the motor 

network. The neuron I (next of H) contains the next motor 

neuron within the same network. Fig. 7D depicts the 

neuron structure of a sample target state interneuron 

(named J) within the target state interneuronal network and 

it represents the interneuron J = [{20, 10, 2}, 129]. The 

head of J is the neuron C (of sensor layer A), and its tail is 

the neuron F (of sensor layer B). Neuron L represents a 

specific controller neuron. Fig. 7E depicts the neuron 

structure of a sample controller neuron (L) within the 

controller network with the neuron J (target state 

interneuron) as its head and the neuron H (motor neuron) 

as its tail. 

IV. LEARNING LOGIC 

The long-term goals for the joint are set to be anywhere 

between ±50° from the upright position. For each 

long-term goal, there will be a set of short-term goals 

defining the target displacements for the muscle controller 

during each time interval. The short-term targets are set 

according to Table II (note that each displacement segment 

corresponds to a multiple of 1.40625°). 

 

 

  

  

  

  

  

  

 

 

Figure. 8.  The overall process flow of the NNM controller. 

The overall process flow of the NNM controller is 

depicted in Fig. 8. Given a long-tern goal, the NNM first 

acquires the muscle manipulator’s current joint position 

and validates whether the muscle manipulator has reached 

the target, if not, a new short term target will be computed 

using the interval halving method with the equation 

newtarget = (oldtarget – currentposition)/2. The control 

sampling time was set at 150ms. Referring to the Fig. 8, the 

NeuraBase muscle control block contains three main 

functions: predict, generate educated guess and feedback 

functions. In the predict function, the NNM controller will 

search for the matching motor patterns in the controller 

layer given the interneuron of the sequence of past 

displacements and the current short-term target 

(interneuron J in Fig. 7E). If a controller neuron exists in 

the controller layer which has a head pointed the 

aforementioned given targetstate interneuron (interneuron 

J), the NNM controller will retrieve the list of linked motor 

actions (the tail of the controller neuron L). Subsequently, 

the list of linked motor actions is sorted according to the 

linked frequency, and the motor action which has the 

highest frequency as well as greater than the preset 

threshold would be selected as the recommended motor 

action. If none of the linked motor actions passes the preset 

threshold, the generate educated guess function will be 

called upon to recommend a motor action interpolated 

from those found suitable for its neighboring positions. If 

all else fails, a random motor value bounded by the 

system’s past experience of known overshooting and 

undershooting motor actions will be suggested.  

Once the recommended force has been determined, the 

NNM controller will execute the motor action. The 

feedback function will then monitor the muscle 

manipulator’s position to evaluate whether it has achieved 

the given target displacement after 150ms. If the objective 

has been met, the controller neuron linking the targetstate 

interneuron with motor action is given a reward of +3. On 

the contrary, if the actual displacement is less than the 

target displacement, the NNM controller penalizes the 

controller neuron by -2, as well as creating a new controller 

neuron which links the targetstate interneuron with [motor 
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TABLE  II. DATA STRUCTURE OF A NEURON (BASIC)

Remaining Distance to Goal (segments) Short-term Target 

Distance (segments)

≥ 40 20

[ 20 40 ) 10

[ 10 20 ) 5

[ 5 10 ) 2

[ 2 5 ) 1

[ 1 2 ) 1



  

action + 1] in the controller network and gives it an 

incentive of +4. Also, the NNM controller sets the 

undershoot flag of the controller neuron to true. On the 

other hand, if actual displacement is greater than the target 

displacement, the NNM controller penalizes the controller 

neuron by -2 and creates a new controller neuron which 

links the targetstate interneuron with [motor action - 1] in 

the controller network and gives it an incentive of +4. Also, 

the NNM controller sets the overshoot flag of the 

controller neuron to true. 

The feedback function is a mechanism that strengthens 

controller actions that have successfully achieve the 

objectives set during a control cycle. Good controller 

actions that help the muscle controller achieve its 

objectives are rewarded. Bad controller actions that have 

failed to help the muscle controller achieve its objectives 

are penalised. The strength of each controller neuron is 

represented by its trained weight; hence, the controller 

neuron with the highest weight will be the most reliable 

prediction because it is the accumulated result of learning, 

using both positive and negative feedbacks from past trials. 

The association of the interneuron and motor neuron in the 

controller network is a reinforced learning process, 

whereby positive and negative feedbacks dictate how the 

learning takes place by tuning the weight of the controller 

neurons. A positive feedback is given if the muscle 

manipulator managed to reach within the target 

displacement, upon which, the weight of the controller 

neuron is incremented by 3. The more the controller 

neuron experiences positive feedbacks for its motor 

predictions, the stronger the link coupling will be, thereby 

resulting in a stronger positive memory of the respective 

motor action. A negative feedback is evoked if the muscle 

manipulator fails to reach the target displacement, upon 

which, the weight of the controller neuron is decremented 

by 2, thus reducing the coupling strength of that link. 

Alternatively, the NNM controller will create a new 

controller neuron linking the sensor event to the motor 

neuron. Eventually, a network of almost all possible sensor 

events associated with motor actions will be stored within 

NeuraBase, and the controller neurons linking sensor 

events to the right motor actions will have higher weights 

compared to those linking sensor events to incorrect motor 

actions. 

This motor range is bounded by motor neurons linked to 

previously used controller neurons which have either been 

flagged as overshooting and/or undershooting controller 

neurons. Each time the overshoot/undershoot flag of a 

controller neuron is set, the range of potential solutions 

becomes smaller, with the controller neuron’s linked motor 

neuron as the new upper or lower boundary of the set. This 

method helps the controller narrow down its choices of 

approximately correct motor actions for the sensor event 

more quickly, compared to the controller having to attempt 

all motor neurons before finding a suitable one. 

V. EXPERIMENTAL RESULTS 

There are three performance metrics used in this 

experiment: 

 Overshoot: intended to identify the muscle’s ability 

to reach the goal segment without overshooting. 

The overshoot/undershoot is computed one 

time-step after the muscle enters or overshoots the 

coarse goal region (resolution of 4.2°) for the very 

first time.  

 Excess Motion: Intended to identify the controller’s 

ability to bring the muscle joint to the middle of a 

goal segment and maintain its position for one 

second. Performance is gauged based the amount of 

excess distance travelled before completing a trial. 

 Average Tracking Speed: intended to identify the 

NNM controller’s ability to bring the muscle joint to 

its coarse goal segment while obeying the smooth 

trajectory short-term goal rules. This average speed 

is computed from the absolute angular distance 

between the initial and goal segments divided by the 

time taken to achieve this motion. 

A. Training Without External Load 

As shown in Fig. 9, it has been observed that with 

training, the muscle manipulator was able to reach the goal 

segment without overshooting much, eventually reaching 

an average overshoot of approximately 0.8° after 25,000 

trials. However, it is worth noting that the curve had 

actually begun to saturate around 15,000 trials, wherein it 

recorded an average overshoot of 1.0°. The performance 

improvement can also be attributed to the NNM controller 

in managing to achieve the short-term goals defined with 

training, which had been set to ensure the muscle joint 

reaches the middle of its goal segment at low speeds. In the 

histogram presentation of the overshoot distribution (see 

Fig. 10), it has been observed that the overshoots ranged 

between ±1.40625° almost 80% of the time after training 

compared to a ~20% at the beginning of training. 

Overshooting between ±1.40625° is reasonable 

considering that position segments are stored at a 

resolution of 4.21875° in NNM. 

 

Figure 9. Plot of the muscle control system’s excess motion for each trial. 

The blue dots represent the overshoots recorded in each trial, while the 

black line denotes a moving average curve of 255 for these points. 

It has also been observed that the average excess motion 

decreased with training (see Fig. 12), which suggests that 

the amount of oscillations had been reduced as the muscle 

controller learns to effectively maintain the muscle within 

the goal region for 1 second. As with the overshoot plot, 

the excess motion performance appears to have begun 

saturating at the 15,000 trial mark with an average value of 

~4.5° and finally recording an average of ~4° after almost 
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25,000 trials. The amount of neurons consumed during the 

training process has been observed to be high, at around 

105,000. However, based on the plot in Fig. 11, the overall 

neuron growth appears to have slowed down considerably. 

The controller network takes up majority of the resources 

in NNM as its neuron consumption currently stands at 

about 70,000, approximately 6 times its distant second, 

which is the Target State Inter-neuronal Network with 

~13,000 neurons. 

 

Figure 10.  Histogram of the muscle control system’s overshoot 

distribution every 1,000 trials. Each coloured bar represents the 

percentage of occurrence of its corresponding overshoot value. The 

maximum overshoot value is saturated to 9.84° in this chart. 

 

Figure 11.  Total neuron usage vs. number of trials. 

 

Figure 12.  Plot of the muscle control system’s excess motion for each 

trial. The blue dots represent the excess motions recorded in each trial, 

while the black line denotes a moving average curve of 255 for these 

points. 

Based on the trajectory targets set, the muscle should 

exhibit higher average speeds when it is targeting goals far 

away compared to nearer ones. To illustrate this, results of 

average tracking speeds have been split into four 

categories, as shown in Fig. 13. Results suggest that the 

muscle controller managed to move the joint to its target 

segment in smoother motions with training. Compared to 

the beginning of training when the average muscle speeds 

were mostly around 70°/s, it has been observed that the 

trained average muscle speeds are approximately ~30°/s, 

~40°/s and ~50°/s for targeting short, moderate and long 

distances respectively. As shown in Fig. 13, during the 

beginning of training, the motor actions used to bring the 

muscle to its target segment have not been trained yet. 

Therefore, especially for the short distance category, even 

though there already existed speed-distance patterns 

whereby the average speed appeared to be proportional to 

the target’s distance, for most parts the muscle was moving 

at high speeds, introducing many overshoots in the process, 

which would be explained further in the next section. 

Towards the end of training, it has been observed that the 

average muscle speed for targeting short distance goals 

have drastically lowered to match the intended trajectory, 

whilst maintaining the speed-distance relationship. For one 

of the medium distances category (Fig. 13c), there was a 

shift in the average speed distribution’s slope. This can be 

attributed to the muscle initially overshooting by large 

margins whenever it crossed the top position (segment 129 

or 180°), therefore the average muscle speeds for the 

shorter medium distances were higher. The controller later 

learned to reduce these occurences by significantly slowing 

down the muscle when it closes in on the target, which 

resulted in a flatter distribution slope, better resembling the 

one in Fig. 13a. A similar observation could be made for 

the other two categories, except that the changes in speed 

distribution as well as decreases in average speed do not 

appear as obvious. Overall, the positive relationship 

between the average muscle speed and the distance 

between the initial and target segments was maintained at 

the end of the training duration, however at much lower 

speeds compared to the first thousand trials. This suggests 

that the muscle controller has learned to better correspond 

to the short-term goals, where fast motions are executed 

when the muscle is far away from the target and slower 

ones are executed as the muscle draws near its target. 

 

Figure 13.  Histograms showing the muscle’s average speed in tracking 

its target between
 
3 and 69 segments away regardless of its rotational 

direction for the first and final
 
1,000 trials of each training phase. Each 

coloured bar represents the average muscle speed recorded for the muscle 

to reach a goal located n-segments away from its initial position.
 

B. Training with External Load 

Another experiment was performed to further 

demonstrate the effectiveness and adaptive behaviour of 

the NNM controller when changes were introduced to the 

muscle manipulator. We tested the NNM controller by 

attaching a 50gram weight to the centre of an 18gram rod at 

a distance of 13cm away from the joint. In a separate 
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experiment, a 50gram weight was attached to centre of a 

35gram rod at a distance of 19cm away from the muscle 

joint. In this experiment, the muscle manipulator was 

executed at a slower speed compared to the former because 

sufficient torque is required to lift the attached weight. The 

experimental results are presented in Fig. 14-17. As shown 

in Fig. 14, due to the manipulator’s generally slow speeds, 

it is not easy for the muscle to overshoot, though it has been 

observed that the occurrence was notably higher during the 

initial stages of training. After training though, additions of 

weights did not seem to have much effect, only recording 

negligibly small bumps in the averages which were then 

reduced once again after training. Therefore, the average 

overshoot stands at 0° after 15,000 trials. This 

improvement in performance, though slight, can also be 

attributed to NeuraBase managing to achieve the 

short-term goals defined with training, which have been set 

to ensure the muscle joint reaches the middle of its goal 

segment at low speeds. In the histogram presentation of the 

overshoot distribution as shown in Fig. 15, it has been 

observed that the overshoots ranged between ±1.40625° 
almost 100% of the time after training compared to a ~75% 

at the beginning of training. Overshooting between 

±1.40625° is reasonable considering that position 

segments are stored at a resolution of 4.21875° in 

NeuraBase. Also, it can be seen that the addition of weights 

increased the amount of overshoots even though they are 

mostly only 1.40625° ones. However, with training the 

distribution returned to approximately its original 

distribution before the weights were added, which can be 

an evidence of the effectiveness of the training. The 

amount of neurons consumed during the training process 

has been observed to experience a slight bump with each 

training phase, as shown in Fig. 16. This situation can be 

explained by the change in the muscle’s inertia when the 

weights were placed or shifted along the muscle link, 

which resulted in different sequences of the muscle joint 

positions, eventually encoded within the Sensor Layer A 

and propagated all the way down to the Controller Network. 

As shown in Fig. 17, the average excess motion did not 

appear to be significantly affected by the addition of 

weights partway through training, though it has been 

observed that the average did experience slight jumps 

when the weights were first placed or shifted on the 

hardware.  

 

Figure 14. Plot of the muscle control system’s excess motion for each 

trial. The blue dots represent the overshoots recorded in each trial, while 

the black line denotes a moving average curve of 50 for these points. The 

green line denotes the point when the weight is attached 13cm from the 

pivot whereas the red line denotes the point when the weight is attached 

19cm from the pivot. 

 

Figure 15. Histogram of the muscle control system’s overshoot 

distribution every 1,000 trials. Each coloured bar represents the 

percentage of occurrence of its corresponding overshoot value. The 

maximum overshoot value is saturated to 9.84° in this chart. 

 

Figure 16. Total neuron usage vs. number of trials. The green line denotes 

the point when the weight is attached 13cm from the pivot whereas the 

red line denotes the point when the weight is attached 19cm from the 

pivot. 

 

Figure. 17. Plot of the muscle control system’s excess motion for each 

trial. The blue dots represent the excess motions recorded in each trial, 

while the black line denotes a moving average curve of 255 for these 

points. 
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