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Abstract—The objective of this study is to develop an 

effective approach for prediction of part dimensional 

accuracy and surface roughness in turning operations using 

neural network based multi-sensor integration strategy. The 

prediction system is built progressively by examining cutting 

parameters known to have influence on product quality from 

various aspects and making integration decisions step by step. 

The integration procedure begins by establishing the 

relationships between the cutting parameters and machined 

part quality and their sensitivity to the process conditions. 

Based on these results and using various statistical tools, 

variables selection, modeling and multi-sensor fusion 

procedures are executed. The results concerning finish 

turning of an Al alloy on a CNC turning machine 

demonstrate that the proposed approach can accurately 

predict on-line the part dimensional deviations and surface 

roughness under various machining conditions. The ANN 

based multi-sensor integration approach can be effectively 

and gainfully applied to in-process monitoring of product 

quality in turning operations because it includes the 

advantages of simple application, reduced modeling time, 

sufficient model accuracy and robustness.  

 
Index Terms—cutting processes, part quality monitoring, 

quality prediction, sensor fusion, ANN.  

 

I. INTRODUCTION 

Turning is one of the most fundamental metal removal 

operations commonly used in the machining industry 

because of its ability to remove material faster giving 

reasonably good quality. It is used in a variety of 

manufacturing industries including aerospace and 

automotive sectors, where quality is an important factor. 

The quality of finished products plays a crucial role in the 

functional capacity of the part and, therefore, a great deal 

of attention should be paid to keep consistent tolerances 

and surface finish. Producing a part with desired 

specifications present technological and economic issues. 

The production of the appropriate dimensional accuracy 

and surface finish affects not only the functional attributes 

of products but affects also their manufacturing costs. 

Working under ideal conditions, engineers can control the 

produced tolerances and surface finish by manipulating 

the cutting parameters. Usually, engineers set the cutting 
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parameters based on experience or a handbook but these 

methods do not always yield the desired results. 

Many different factors influence the part dimensional 

accuracy and surface finish, such as tool variables, 

(geometry, nose radius, stiffness, tool holder, etc.), 

workpiece variables (material, hardness, part fixtures, etc.), 

machining process parameters (spindle speed, feed rate, 

depth of cut, etc.) and machining operations conditions 

such as cutting forces, machine vibration, progressive tool 

wear, cutting tool deflections, cutting fluid, variation of 

process conditions during the cutting operation, and others 

dynamic variables. The complex correlations between 

these factors make it difficult to develop part dimensional 

accuracy and surface finish improvement approach based 

only on human experience. For this purpose, all factors 

must be considered simultaneously to build up an 

appropriate and successful approach. Under these 

conditions, an intelligent integration strategy of various 

information sources becomes the key for developing an 

efficient in-process quality prediction system. 

Many research efforts in machining have been devoted 

to on-line prediction and control of dimensional deviation 

and surface roughness. In these efforts, adaptive control 

has been considered as a promising strategy to adapt 

on-line the process parameters to the widely varying 

machining conditions [1]. Such adaptive systems are 

difficult to implement in the industry. The most important 

reasons are the absence of sensing devices that reliably and 

effectively provide part quality measurements in a hostile 

machining environment, and the lack of deeply 

understanding of the cutting process leading to inadequate 

modeling strategies [2], [3]. Although during the past 

decade, some sensors have been designed for quality 

characteristics measurements such as on-line dimensional 

deviation and surface roughness. The accuracy and 

reliability of these sensors remain uncertain. Indeed, 

sensor development for quality measurements has 

followed two major trends: direct and indirect sensing 

methods. Direct sensing methods, which that measure the 

quality directly from the part, are not successful in 

producing reliable on-line measurements [2]. Contacting 

sensors are often ineffective mainly due to wear, fracture, 

vibration and chip evacuation problems, while non-contact 

sensors are impractical mainly due to the interference of 

chips and cutting fluid. On the other hand, indirect sensing 
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methods measure physical quantities such as cutting forces, 

cutting power, vibrations and acoustic emissions. The 

measured variables are used in a model that estimates the 

quality characteristics. Indirect methods provide a more 

economic and flexible capability, particularly when 

combined with an efficient modeling technique. 

Recently, further attention has been directed at using 

and improving sensor fusion and integration techniques 

[4]-[7]. The fusion of sensors is basically an indirect 

method using a combination of sensor as input into a 

mathematical model to extract corroborative and relevant 

information on the state of the machining operation. In 

machining, sensor fusion is suggested where only a few 

sensors can be applied and each sensor measures a 

different variable. On the other hand, two difficulties are 

encountered in this issue: selecting the robust modeling 

technique and selecting the appropriate sensors. No 

systematic method for sensor fusion can be found in the 

machining literature. However, it is reasonable to assume 

that sensor fusion is carried out through a series of steps in 

which decisions are made based on specific statistical tests. 

Typically, sensors are chosen based on available 

knowledge of the relationship between the sensor 

measurements and the characteristics to be identified. For 

modeling, two categories of models can be used: 

theoretical and empirical. Theoretical models are often 

very difficult to develop because of the reduced 

understanding of fundamental behavior of machining 

processes. The most current theoretical models are limited 

to very few measurable variables. Empirical modeling 

methods use experimental data to adapt the parameters of 

the model in order to compensate for the inability to 

adequately describe the process mechanisms. As 

suggested in various works, easily available information 

on machining operations can be used to establish models 

using a multivariate modeling technique such as multiple 

regressions and Artificial Neural Networks (ANN). 

As compared to other techniques, ANNs provide a more 

effective modeling capability, particularly when the 

relationship between the sensors based information and 

the characteristic to be identified is non-linear. ANNs can 

handle strong non-linearity, large number of variables, and 

missing information. Based on their intrinsic learning 

capabilities, ANNs can be used in a case where there is no 

exact knowledge concerning the nature of relationships 

between various variables. This is very useful to reduce 

the experiment efforts.  

On the other hand, model building analysis is often 

conducted with a large set of potential predictor variables. 

From these variables, only a specific subset is useful. Thus, 

the identification of important variables is crucial to the 

modeling success. The selection of variables can be 

carried out efficiently only if statistical techniques are 

applied systematically. Three existing methods have been 

widely used for variables selection. These methods are: 

engineering judgment (EJ), correlation analysis (CA) and 

step-wise regression (SWR). However, none of them can 

find the optimal models consistently. EJ is based on 

individual’s experience about machining to determine 

simplified models. It is useful to choose preliminary 

variables for further investigation. It is risky to use a small 

number of variables without exact knowledge of process 

behaviors and impossible to find the best model only by 

the EJ method. CA uses the correlation coefficients to 

select highly correlated variables as a model. Because of 

the variables are also correlated to one another, this 

method is only suitable to find the model with a single 

variable. The standard SWR is able to find a better model 

with multiple variables, because the partial correlation 

between the variables is investigated. This regression 

method first includes the most strongly correlated 

variables and then adds or subtracts one variable at a time 

based on an F-distribution value that evaluates the 

contribution of the added or removed variable. The effect 

of combining two or more variables at a time is never 

considered. Since the variables are inter-correlated, the 

combinations of variables are important during the 

modeling. In addition to the above methods, there are two 

other variable selection procedures: forward selection and 

backward Elimination. These methods present a similar 

drawback as those of the SWR. Although the traditional 

selection procedures offer the possibility of isolating one 

reduced model, they are unable to identify alternative 

candidate subsets of the same size or a model considered 

to be optimal according to various criteria. Hence, these 

procedures could lead to poor results since the interactions 

between variables cannot be considered. Thus, the basic 

condition to successfully implement an optimal variable 

selection requires a simultaneous application of the 

selection criteria. 

The aim of this study is to develop an effective 

approach for in-process monitoring of product quality in 

turning operations using an ANN based multi-sensor 

integration strategy. The proposed approach is built 

progressively by examining cutting parameters known to 

have influence on part dimensional accuracy and surface 

roughness from various aspects and making sensor 

integration decisions step by step. In order to carry out the 

integration strategy, extensive experiments are required to 

provide an efficient and optimal modeling database. 

II. EXPERIMENTAL STUDY  

Numerous factors influence the dimensional accuracy 

and surface finish during turning operations. This study 

will be restricted to only five of them to illustrate the 

proposed approach. The first three factors are the cutting 

parameters, which include cutting feed (f), cutting speed (s) 

depth of cut (d). The two other factors include the process 

conditions that are believed to have a significant influence 

on dimensional deviation (Dd) and surface roughness (Ra). 

These represent cutting fluid flow and tool wear. The 

effects of the five factors on seven other measured 

variables will also be analyzed. These variables include 

the three components of the cutting forces (Fx, Fy, and Fz), 

the three components of the machine tool system 

vibrations (Vx, Vy and Vz) and acoustic emissions (AE). 

A.  Experimental Design 

In any experiment, the results depend to a large degree 

on the way by which the data was collected. In a lot of 
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cases, full factorial experiments are conducted. This 

design cannot be implemented when there are too many 

factors are under consideration because the number of 

repetitions required would be prohibitive in time and cost. 

Typical fractional factorial designs cannot produce 

credible results in a case where interactions among the 

factors exist. By contrast, the use of a testing strategy such 

as the orthogonal arrays (OAs) developed by Taguchi led 

to an efficient and robust fractional factorial design of 

experiments that can collect all the statistically significant 

data with the minimum possible number of repetitions. 

Accordingly, the OAs will be used in this paper for the 

design of experiment and the fusion procedure. 

T    FACTORS LEVELS CHOSEN FOR THE EXPERIMENTS  

 Training sets Validation sets 
Depth of cut (mm) 0.25 to 1.5 0.5 to 1.125 
Feed (mm/rev) 0.05 to 0.2 0.075 to 0.15 
Speed (mm/min) 150 to 350 200 to 300 
Cutting tool wear Small - Average Small - Average 
Cutting fluid Yes - No Yes - No 

   THE 24 REPETITIONS OF THE EXPERIMENTS “#1 TO #16 FOR 

TRAINING AND #17 TO 24 FOR VALIDATION” 

Test 
# 

e Dimensional deviation: Dd (m) e Surface roughness: Ra (m) 

 1st  2nd  3rd  Average   1st 2nd 3rd Average 

1  5.0 6.0 4.0 5.0  1.67 1.64 1.70 1.67 

2  7.0 9.0 5.0 7.0  2.81 2.43 2.52 2.51 

3  18.0 18.0 15.0 17.0  3.97 3.57 3.54 3.60 

4  15.0 16.0 14.0 15.0  2.54 2.83 2.87 2.81 

5  7.0 7.0 4.0 6.0  2.25 2.21 2.27 2.24 

6  12.0 13.0 12.0 12.0  3.30 3.14 3.02 3.10 

7  8.0 9.0 7.0 8.0  3.51 3.11 3.17 3.18 

8  6.0 7.0 5.0 6.0  3.01 2.84 2.85 2.86 

9  18.0 18.0 15.0 17.0  3.40 3.11 3.04 3.11 

10  13.0 15.0 14.0 14.0  2.71 2.93 3.02 2.95 

11  19.0 19.0 16.0 18.0  3.57 3.35 3.45 3.42 

12  14.0 15.0 13.0 14.0  3.22 2.93 2.99 2.99 

13  8.0 10.0 9.0 9.0  2.66 2.20 2.29 2.29 

14  14.0 15.0 12.0 14.0  4.01 3.25 3.30 3.35 

15  21.0 22.0 21.0 21.0  4.22 4.36 4.30 4.32 

16  13.0 14.0 14.0 14.0  3.08 3.08 3.17 3.12 

17  5.0 6.0 3.0 5.0  2.75 2.92 2.53 2.73 

18  7.0 8.0 6.0 7.0  3.51 3.54 2.89 3.25 

19  16.0 18.0 17.0 17.0  3.76 3.60 3.50 3.57 

20  14.0 16.0 14.0 15.0  4.21 4.20 3.83 4.04 

21  5.0 6.0 7.0 6.0  3.03 2.80 2.88 2.86 

22  13.0 14.0 10.0 12.0  2.87 3.03 2.89 2.95 

23  9.0 9.0 6.0 8.0  2.54 2.76 2.61 2.67 

24  5.0 7.0 6.0 6.0  3.16 3.05 2.55 2.84 

 

The experiments were carried out on a vertical CNC 

machine using a high-speed steel cutter. The workpiece 

material used was an aluminum 6061-T6 type. The 

dimensional deviation Dd is simply the difference between 

the reference and finished part dimensions. These 

dimensions are measured using an accurate micrometer. 

On the other hand, the surface roughness Ra was measured 

using a portable Mitutoyo Surftest profilometer. In order 

to measure cutting forces, the workpiece was mounted on 

a Kistler three component piezoelectric dynamometer, 

bolted rigidly onto the machine table. A three components 

accelerometer and an acoustic emission transducer 

mounted close to the cutting zone measured, respectively, 

the accelerations due to the machine-workpiece-tool 

system vibrations and the acoustic emissions generated by 

the machining operation. 

Single pass, linear cuts were executed according to the 

factor levels of each repetition. The factor levels chosen 

are given in Table I. The fact that finishing and 

semi-finishing conditions are examined limits the depth of 

cut to below 1.5 mm. Feed and cutting speed levels were 

chosen in the range recommended by the manufacturer. 

The choice for small or average cutting tool wear was 

made based on the fact that in the finishing processes the 

cutter would be changed before there was a chance for 

increased wear to arise. Average wear was defined as 

corresponding to 10 min of cutting time. Use of cutting 

fluid was considered as a binary variable. Consequently, 

there are a total of five factors in the experiment, three of 

which have three levels and two have two levels each. The 

OA that best fits this experiment is the Ll6. In order to 

evaluate the capacity of the fusion model, another set of 8 

tests was designed as illustrated in Table II. The total of 24 

tests is repeated five times. To determine Dd and Ra three 

measurements were taken on a specific area of the 

workpiece and the average values were calculated. All 

sensor signals were acquired then conditioned so that only 

the steady-state portions were retained. For each repetition, 

the minimum, maximum and mean values of the cutting 

forces, the vibrations, and the acoustic emissions in the 

steady state portions were calculated. The maximum 

values were considered as most representatives. The 

results of the experimental tests are reported in Table II. 

B. Experimental Data Analysis 

The experimental data was analyzed using three 

statistical tools: the % contribution from ANOVA, the 

average effect of each factor level, and the correlation 

between sensor measurements and the characteristics Dd 

and Ra. The % contribution of a factor reflects the portion 

of the variation observed in the experiment attributed to 

this factor. Ideally, the total % contribution of all 

considered factors must add up to 100. The difference 

from 100 represents the contribution of some other 

uncontrolled factors and experimental errors. Another 

interesting way to analyze the effect of a given factor on 

sensor responses is the graph of average effects. As the 

experiments were designed using an OA, the estimates of 

the average effects will not be biased. 

Graph of average effects in Fig. 1 shows that Dd and Ra 

are affected at different degrees by all process conditions 

and cutting parameters. In this graph, the horizontal axe 

indicates the factor levels. The plotted points correspond 

to the averages of the observations realized under each 

factor level. The factors predominantly affecting Dd and Ra 

are feed rate, depth of cut and wear. The effects of cutting 

speed and fluid are negligible. These results are expected 

since the cutting forces, which are recognized as having a 

large effect on part quality, are more sensitive to changes 

in feed and depth of cut than to variations of the cutting 
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speed. Wear appeared as the most important uncontrolled 

factor.  

 

 

Figure 1. Effect of cutting parameters and process conditions on Dd and 
Ra 

Similar conclusions can be clearly established from the 

percentage contributions reported in Table III. As 

expected, the cutting forces are affected by feed and depth 

of cut. Apparently, tool wear has a relative effect on AE, 

while vibrations are much affected by the cutting speed. 

However, these results show that the error contribution 

associated with these sensors is very high, indicating that 

other factors could perturb the generated AE and 

vibrations. Accordingly, these variables cannot be used 

reliably to monitor Dd and Ra. Cutting forces present 

similar responses. However, as can be seen, Fx is more 

affected by tool wear than Fy and Fz. On the other hand, Dd 

and Ra show strong correlations with depth of cut, cutting 

feed and cutting forces. Accordingly, one can presume that 

Dd and Ra can be controlled only by these factors. Finally, 

Table III shows that the error contributions are acceptable 

(less than 10%). This implies that the most important 

cutting conditions that influence Dd and Ra were included 

in the experiments. Based on these results, it still remains 

difficult to select the appropriate modeling variables. A 

systematic and rigorous approach for best variable 

combination selection is required. 

TABLE III.    % CONTRIBUTIONS OF EXPERIMENTAL VARIABLES 

 Wear Fluid Depth Feed Speed Error 
Fx 9.28 - 42.64 46.5 0.99 0.59 
Fy 5.35 - 45.72 46.63 0.78 1.52 
Fz 4.19 - 39.93 50.34 0.04 5.5 
Vx - - 4.55 24.83 45.6 25.02 
Vy - - - 11.74 67.44 20.82 
Vz - - 0.22 13.57 58.77 27.44 
AE 6.49 - 5.13 14.44 65 8.94 
Dd 35.44 3.61 26.91 23.66 2.82 7.56 
Ra 13.8 2.26 17.2 59.58 5.59 1.57 

III. BUILDING OF THE PREDICTION MODEL 

A.  Proposed Modeling Strategy 

Machining is a complicated dynamic process with 

various nonlinearities and stochastic disturbances. The 

difficulty to build an effective prediction model lies in the 

selection of the modeling conditions and the number and 

the type of the variables to include in the model. These 

choices represent the basic ingredients of any sensor 

fusion strategy. Selecting the model form and modeling 

technique is not sufficient to produce the best model. 

Under these conditions, because the deterministic models 

are typically valid only for a limited range of cutting 

conditions, ANNs present the best modeling alternative. 

While various neural techniques can be used in this 

approach, multilayer feedforward network seems to be one 

of the most appropriate because of its simplicity and 

flexibility. On the other hand, in order to extract a cost 

effective and rapid best combination of variables to be 

included in the quality model, Taguchi’s OAs is used 

again. The variables selection is based on the analysis of 

the effect of each variable combination on the model’s 

performance as well as the variable contribution to 

decrease modeling and validation errors. 

Many criteria can be used to assess whether a reduced 

model adequately represents the relationship between the 

machined part quality and the cutting parameters under 

various process conditions. Measuring the performance of 

fitted models is based on the principle of reducing several 

statistical criteria. These include the residual sum of 

squared error (SSE), the residual mean square error (MSE), 

the total squared error (Mallow’s Cp), and the coefficient 

of determination (R
2
). For the majority of modeling 

techniques, the model is determined by minimizing the 

residual sum of squares (SSE). All the criteria, MSE, Cp, 

and R
2
 are a linear function of SSE. The combination of 

variables minimizing the SSE creates MSE and Cp as the 

minimum, and R
2
 as the maximum under a fixed number 

of variables. Among these criteria, R
2
 does not have an 

extreme value and shows a gradual increasing trend when 

the number of variables in the model is increased. Thus, 

the use of R
2
 as a criterion for the selection can allow some 

subjectivity. If p variables among q variables are selected, 

the residual mean square is MSEp=SSEp/n-p-1. Where n is 

the total number of observations. The terms SSEp and n-p 

both reduce with an increase in the number of independent 

variables p. Therefore, MSEp has the ability of showing an 

extreme value. In this study, the used judgment function 

consists in minimizing the training residual mean square 

error (MSEt), and the validation residual mean square error 

(MSEv). 

B.  Application of the Proposed Strategy  

To illustrate the proposed fusion strategy, ten variables 

were considered. Before selecting the variables and 

modeling, it was important to establish the ANN 

parameters in order to optimize the training performances. 

The idea is to approximate the relationship between the 

size of the hidden layer, the number of input variables and 

the complexity of the parameters to be estimated. For all 

trained models, an average error of less than 1% was used, 

irrespective of the hidden layer size. Consequently, to 

avoid long training and overfitting that could disturb its 

accuracy, the [NP*2NP+1*2] network structure was 

selected (NP: number of inputs). For variable selection, 

the procedure begins by selecting the OA for models 

design. The OA that best fits this modeling procedure is 

the L12. The performances of the designed models are 

presented in Table IV. The (+) and (-) signs respectively 

indicate, whether the variables are used as input to the 

model or not. The models accuracy is presented as a 

function of the seven selection criteria.  

Table IV shows that all models fitted the data relatively 

well as indicated by the MSE values. Using these results, 
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the average effect of each variable on the model’s 

performance was calculated. The average effect of each 

input variable on the criteria represented by its percentage 

contribution in improving the model’s accuracy is 

presented in Table V. The average effect graphs 

demonstrate that the variables that have positive effects on 

the designed models are cutting parameters and cutting 

forces. The presence of the speed, the vibrations an 

acoustic emission in the model increase the MSE values. 

These results reveal that the variables that can 

significantly reduce the MSE values are d, f and Fz. 

Accordingly the model including the selected variables 

was built. As shown in Table IV, the results demonstrate 

that this quasi-optimal model (QO) performs better than 

all former ones.   

TABLE IV.  MODELS EVALUATION USING MSET AND MSEV 

Predictor variables  Criteria 
# d f s Fx Fy Fz Vx Vy Vz AE  Dd-MSEt Dd-MSEv Dd-MSEtot Ra-MSEt Ra-MSEv Ra-MSEtot MSEtot 
1 + + + + + + + + + +  3.24 1.42 4.66 1.16 0.85 2.01 6.67 
2 + + + + + - - - - -  3.35 1.61 4.96 1.27 0.89 2.16 7.12 
3 + + - - - + + + - -  3.45 1.56 5.01 1.25 0.90 2.15 7.16 
4 + - + - - + - - + +  3.72 1.64 5.36 1.35 0.97 2.32 7.68 
5 + - - + - - + - + -  3.85 1.64 5.49 1.43 0.99 2.42 7.91 
6 + - - - + - - + - +  3.86 1.80 5.66 1.44 1.08 2.52 8.18 
7 - + - - + + - - + -  3.67 1.73 5.40 1.29 0.89 2.18 7.58 
8 - + - + - - - + + +  3.98 1.68 5.66 1.39 1.01 2.40 8.06 
9 - + + - - - + - - +  3.90 1.74 5.64 1.40 0.99 2.39 8.03 

10 - - - + + + + - - +  3.94 1.66 5.60 1.40 0.96 2.36 7.96 
11 - - + - + - + + + -  4.27 1.82 6.09 1.47 1.11 2.58 8.67 
12 - - + + - + - + - -  4.04 1.66 5.70 1.40 1.00 2.40 8.10 
QO + + - - - + - - - -  3.17 1.43 4.60 1.13 0.83 1.96 6.56 

TABLE V.   % CONTRIBUTIONS OF MODELING VARIABLES 

 d f s Fx Fy Fz Vx Vy Vz AE Error 

Dd_MSEt 45.65 36.1 1.41 1.73 2.69 11.23 - 0.34 0.21 - 0.64 
Dd_MSEv 31.41 26.73 2.25 8.98 5.70 18.8 2.61 1.28 0.56 0.46 1.22 
Ra_MSEt 14.00 55.48 0.80 2.84 2.59 23.23 - - - - 1.06 
Ra_MSEv 30.18 39.97 - 0.16 4.59 19.00 - - 2.05 1.51 2.54 
MSEtot 31.67 39.36 0.79 4.29 1.96 19.59 0.11 0.76 - - 1.47 

 

IV. CONCLUSION 

The current study presents an effective approach for 

in-process part dimensional accuracy and surface 

roughness prediction in turning operations using a neural 

network based sensor fusion strategy. Several sensors 

were analyzed, and their correlation with dimensional 

deviation and surface roughness during a turning operation 

was investigated under different practical process 

conditions. The proposed fusion strategy successfully 

selected the variables providing the best information about 

the machining operation. Using this information, the 

quasi-optimal model was established. The results 

demonstrate that the proposed approach can accurately 

predict on-line dimensional deviation and surface 

roughness with an average error less than 10 % under 

various machining conditions. 
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