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Abstract—This paper studies the planning problem of 

hydro-thermal system with annual water consumption 

constraints, which are motivated by the practical system in 

the Yellow River Basin of China. This problem is formulated 

as one multistage stochastic optimization problem. The 

high-dimensional, dynamic, nonlinear and stochastic 

characteristics of hydro-thermal systems are considered. 

Since we can hardly get the accurate estimation of natural 

inflows in a further future, a new framework, 

the-closer-the-more framework, is proposed for scenario tree 

construction. This framework can help to reduce the size of 

the problem. The solution approach is nonlinear stochastic 

dual dynamic programming, which is based on the 

approximation of the expected-cost-to-go function of 

stochastic dynamic programming by a piecewise linear 

function. Moving window method is used for planning. At 

each stage, annual water consumption constraints are divided 

two parts in optimization problem, one is for current year 

and the other is for next year. Numerical results are also 

presented for illustration. Efficiency and practicality can be 

seen in our simulation on several situations.  

 
Index Terms—framework, long-term planning, scenario tree, 

stochastic dual dynamic programming. 

 

I. INTRODUCTION 

Hydro-thermal systems consist of reservoirs, 

hydropower plants and customers who need water and 

electric power. Long-term planning of hydro-thermal 

systems faces various challenges such as uncertainties of 

natural inflows, consumer needs and fuel price, nonlinear 

costs and large dimensions, etc. Long-term planning of 

hydro-thermal systems is usually modeled as an 

optimization problem to minimize total system cost subject 

to reservoir requirements, water balance equations, water 

demand constraints and electricity demand constraints.  

Hydro-thermal systems have been researched for 

decades. The simplest model is in deterministic context [1] 

where future inflows are assumed known. But 

deterministic optimization usually results in larger cost [2]. 

Linear programming (LP), nonlinear programming 

(NLP) and dynamic programming (DP) techniques have 
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been largely used to solve the problems of planning and 

management of hydro-thermal systems. Yeh provides a 

comprehensive survey of LP, NLP and DP [3]. Labadie 

gives a detailed review of different models, such as discrete 

dynamic programming models, stochastic dynamic 

programming models and so on [4]. Yakowitz presents a 

careful review on DP applications in water resources in 

both deterministic and stochastic cases [5]. Markov 

Decision Process (MDP) is also widely used to formulate 

and to solve the long-term hydro-thermal scheduling 

problem [6]. However, since the state space and the action 

space become bigger as the size of scheduling problem gets 

larger, the problem is intractable for both DP and MDP 

[7][8]. To deal with the curse of dimensionality, many 

algorithms are developed, like Rollout algorithm [7], 

aggregation methods [8] etc. Essentially, the long-term 

planning of hydro-thermal systems is a multistage 

stochastic dynamic optimization problem, which needs to 

consider the uncertainty of the future for sustainable water 

resource management. Stochastic programming (SP) is a 

powerful tool for optimization under uncertainty. Birge 

and Louveaux   provide a good introduction to SP and a 

number of techniques [9]. Pereira and Pinto use stochastic 

dual dynamic programming to solve multi-stage stochastic 

optimization for energy planning [10]. Morton applies 

Benders decomposition to solve the stochastic linear 

reservoir scheduling problem [11]. Qi and Chen develop a 

nonlinear stochastic dual dynamic algorithm (NSDDP) for 

long-term water resources scheduling problem [12]. 

However, discretization of continuous random variables, 

e.g. natural inflows, are indispensible when implementing 

these algorithms. Many methods for solving stochastic 

optimization problems are based on scenario-tree 

modeling [13]. A finer discretization results in a larger size 

of the problem. Heitsch and Römisch develop 

theory-based heuristics for generating scenario trees, 

which are based on forward or backward algorithms 

consisting of recursive scenario reduction and bundling 

steps [14].  

Regarding to the planning of hydro-thermal systems, in 

fact, we usually have less accurate forecast of natural 

inflows in a further future. On the other hand, natural 

inflows in a nearer future have much more impacts on 
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hydro-thermal planning. As time moves on, when accurate 

data of natural inflows become available we can update the 

planning with new information. Different from the 

previous work on the planning of hydro-thermal systems, 

in this paper, we propose a new framework for multistage 

hydro-thermal planning in which finer discretization of 

continuous random variables (natural inflows) is used for 

nearer future. By this way, we can reduce the computation 

complexity for the planning problem. 

The paper is organized as follows. In Section 2, the 

problem of long-term planning of hydro-thermal systems is 

formulated as a stochastic dynamic programming model. In 

Section 3, the-closer-the-more framework for scenario tree 

is discussed and the method for solving the problem is 

presented. In Section 4, a numerical example is given for 

illustration. Finally, Conclusion and future work are 

summarized in Section 5. 

II. FORMULATION 

In this section the long-term planning of hydro-thermal 

systems is formulated as a general constrained stochastic 

dynamic programming model. We build up a model for 

hydro-thermal systems which has 10 reservoirs and 6 cities. 

Those cities are consumers of water and electricity. The 

unfulfilled demands of water and/or electricity will lead to 

costs.  The aim is to minimize total costs under various 

constraints, such as reservoir’s capability, generator’s 

capacity and annual water consumption quota, etc. 

A. Notations 

We first introduce notations used in our model. 

I   number of reservoirs. 

C  number of cities. 

T  planning horizon. 12T  months. 

t    stage index, 1,2,...,12t  . 

tv  reservoir storage vector at stage t ; its dimension is 

I . 

0v  initial reservoir storage vector. 

,t tv v  upper and lower bounds of 
tv . 

tξ  natural inflow vector at stage t ; it’s a random 

vector. 

tr   water used to generate electricity at stage t . 

tr   upper bound of 
tr . 

ts  water spillage vector at stage t . 

tw  water consumption at stage t . 

annualw  annual water consumption quota vector. 

,i t  coefficient of hydro efficiency of reservoir i  at 

stage t . 

tp  electricity shortage at stage t . 

tde  electricity demand at stage t . 

to  water shortage vector at stage t . 

tdw   water demand vector at stage t . 

B. Objective Function 

Fig. 1 depicts a hydro-thermal system which consists of 

10 reservoirs and 6 cities. 

The objective function is 

1 2, ,...,
1

min ( , ; )
T

T

t t t t
t

E c p


 
 
 


ξ ξ ξ
o ξ                   (1) 

where ( , ; )t t t tc p o ξ  represents the cost at stage t  which is 

a function of electricity shortage and water shortage. 

 

Figure 1.  A hydro-thermal system with 10 reservoirs and 6 cities 

C. Constraints 

1) Water balance 

1
( )

t t t t t t t
     v v A r s w ξ h                  (2) 

where  1 0 0
T

t thh and 
1th  is the amount of 

water that flows into reservoir 1 from upstream river at 

stage t . { }I I

ija A  is the connection matrix of reservoirs 

and rivers. The components of A  are defined as follows: 

1

[0,1], ,ij

ij ij

i j
a

i j 

 
 

 
                       (3) 

where 
,i j  is the percentage of reservoir j ’s downstream 

water going into reservoir i . If reservoir j  and reservoir i   

have no connection, then
, 0i j  . If reservoir j has 

downstream reservoirs, then 

,

,

1i j

i i j




                                      (4) 

For the system shown in Fig. 1, the matrix of A  is  

2,1

3,2

4,2

5,4

6,3

7,3

8,7

9,7

10,9

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



















 
 


 
 
 

 
 
 

 
 
 

 
 

 
  

A
 (5) 
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2) Shortage constraints 

At each stage, water shortage vector 
to  is determined 

by the water consumption vector
tw , that is 

max( , )t t t o 0 dw Uw                       (6) 

where { }C I

iju U describes the relations between cities 

and reservoirs. If reservoir i  supplies water to city j , then 

1iju  ; otherwise, 0iju  .  For the system shown in Fig. 1, 

it is 

1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0

 
 
 
 

  
 
 
 
  

U            (7) 

For the sake of simplicity, we write it into inequality 

constraints: 

t t t Uw o dw                         (8) 

0.t o                                 (9) 

Since electricity transmission is easier than water, we no 

longer count its shortage separately. As
tde represents the 

summation of all electricity demands and 
tp  is the 

shortage at stage t , 
tp satisfies the following constraints: 

T

t t tp de η r                               (10) 

0.tp                             (11) 

3)  Annual water consumption quota 

Total water consumption of all cities in a year cannot 

exceed the quota according to state regulations: 

1 1 .

T I

ti annual

t i

w w
 

                     (12) 

D. Summary 

Put all these constraints together, the optimization 

problem has a form like this: 

1 2, ,...,
1

1

1 1

min ( , ; )

. .

( )

, , , , , 0 1,2, , .

T

T

t t t t

t

t t t t t t t

t t t

T

t t t

T I

ti annual

t i

t t t t t t

E c p

s t

p de

w w

p t T





 

 
 
 

     

 

 



 





ξ ξ ξ
o ξ

v v A r s w ξ h

Uw o dw

η r

v r s w o

       (13) 

To make it simpler we define a new variable taw : 

1

t

t k

k

aw w                                 (14) 

Then (13) can be written as: 

1 2, ,...,
1

1

1

min ( , ; )

. .

( )

, , , , , 0

1,2, , ,

T

T

t t t t

t

t t t t t t t

t t t

T

t t t

t t t

T

T annual

t t t t t t

E c p

s t

p de

w

p

t T







 
 
 

     

 

 

 

 






ξ ξ ξ

o ξ

v v A r s w ξ h

Uw o dw

η r

aw w aw

1 aw

v r s w o

            (15) 

where T
1  is a row vector that all elements are 1. 

We denote ( , , , , , , )t t t t t t t tpx v r s w aw o , then problem 

(15) can be described in the following form: 

1 2, ,...,
1

1 1 1 1

1 1

min { ( ; )}

. .

( )

( )

2,..., .

T

T

t t t

t

t t t t t t

E c

s t

f

f

t T



 



 




ξ ξ ξ

x ξ

M x ξ

L x M x ξ

               (16) 

Note that only variables in adjacent stages appear in any 

inequality constraint. 
tξ represents the amount of natural 

inflow which is a continuous random variable. Its 

probability distribution can be estimated with historical 

data. The problem described with (16) is a multistage 

stochastic dynamic optimization problem. 

III. METHODOLOGY 

A. Moving Window for Dynamic Planning 

Weather usually exhibits remarkable seasonal variation 

which has a period of one year. Naturally, we use a 

12-month moving window for planning in each month. 

Suppose at the end of each year the annual water 

consumption quota will be checked. Hence we need to 

calculate the water consumption within one year. 

For example, when current month moves to May, total 

water consumption in the first 4 months (from January to 

April), denoted as
consumedw , becomes known. Therefore, 

for the remaining 8 months (from May to December), the 

water consumption quota is 

.annual consumedw w w   

To update the planning for May, we simply set the water 

consumption quota as
consumedw  for the first 4 months in the 

next year as shown in Fig. 2. 

 

Figure. 2.  Moving window and water consumption quota 
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By this way, the annual water consumption constraint, 
T

T w 1 aw , in model (15) can be written into two parts. 

The first part is about quota from current stage to 

December: 

( 1,2, , ),T

t w t T  1 aw  

where 1,2, ,t T .  For example, T =8 when current 

stage is in May. The second part is about quota in next 

year: 

( 1, , ).T

tw w t T T    1 aw  

B. Scenarios based optimization 

Usually, scenarios based multistage stochastic programs 

are used to solve problems as formulated in (16). For 

example, we consider only two months. The model (16) 

reduces to 

1 1 1 2 2 2

1 1 1 1

1 1 2 2 2 2

min ( ; ) { ( ; )}

. .

( )

( )

c E c

s t

f

f





 

x ξ x ξ

M x ξ

L x M x ξ

                (17) 

It is hard to evaluate the expectation of cost in the 

second month. Usually the probability density function of 

2ξ  is considered to be discretized at several possible 

values with specific probabilities. For instance, we get the 

discrete distribution of 
2ξ  from samples as, 

2 21 1( )P p ξ ξ  and
2 22 2( )P p ξ ξ . Thus the inflow 

scenario tree which represents the probabilistic nature of 

the model is shown in Fig. 3. 

Each node in the scenario tree is a realization of inflow 

at that stage. Thus a scenario is a path that begins at a node 

in first stage and ends at a second-stage node. With the 

scenario tree, the problem (17) can be described as a 

deterministic optimization problem: 

1 1 1 1 2 21 21 2 2 22 22

1 1 1 1

1 1 2 21 2 21

1 1 2 22 2 22

min ( ; ) ( ; ) ( ; )

. .

( )

( )

( )

c p c p c

s t

f

f

f

   



 

 

x ξ x ξ x ξ

M x ξ

L x M x ξ

L x M x ξ

 (18) 

It is obvious that the scale of problem (18) is 

proportional to the number of nodes in the scenario tree 

shown in Fig. 3. From this example, we see that the 

scenario tree represents the random data and affects the 

accuracy of the optimization results. Detailed methods of 

generating scenarios from sampling data or given 

distributions can be found in [13]. 

In order to explain our idea clearly, we impose the 

following assumptions. 

 The distribution of 
tξ , 2,...,t T is independent 

for different t . Hence, conditional 

probability
1 2 1( | , ,..., )t tP ξ ξ ξ ξ  simply equals 

to ( )tP ξ . 

 The distribution of 
tξ  is discrete and concentrated 

on finite points.  

For example, a 3-stage problem of which the number of 

possible values of discrete probability distribution of  

( 1,2,3)t t ξ  are 2 4 31 2 3  ( nt  means 
tξ  has n  discrete 

possible values). The scenario tree of it is shown in Fig. 4.  

 

Figure 3.  Scenario tree of a simple example 

 

Figure 4.  Scenario tree of a multistage example 

C. NSDDP Algorithm 

We have shown that, with scenario tree, a stochastic 

optimization problem can be written into a deterministic 

optimization problem and its scale is proportional to the 

number of nodes of the tree. Hence the scale of the problem 

increase as the number of stages increases. With nonlinear 

stochastic dual dynamic programming (NSDDP) algorithm 

we can get the optimal solutions for larger scale problems 

[12]. 

Under the dynamic programming formulation of the 

problem, when given
1T x , for the terminal stage, we have 

1

1 1

( ; ) min ( ; )

. . ( ).

T
T T T T T T

T T T T T T

Q c

s t f



 



 

x
x ξ x ξ

L x M x ξ
(19) 

Let 

 
11 1 1( ) ( ; ) , 1,..., 1

tt t t t tE Q t T
    

ξ
x x ξQ          (20) 

and 

1 1

1 1

( ; ) min ( ; ) ( )

. . ( ).

t
t t t t t t t t

t t t t t t

Q c

s t f

 

 

 

 

x
x ξ x ξ x

L x M x ξ

Q
       (21) 

Therefore, problem (15) can be rewritten in the 

following form: 
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0
1 0 1 1 1 1 2 1

0 0 1 1 1 1

( ; ) min ( ; ) ( )

. . ( ).

Q c

s t f

 

 

x
x ξ x ξ x

L x M x ξ

Q
             (22) 

Since closed form expression of 
2 1( )xQ  is not available, 

(22) cannot be solved directly. 

It has been proved that 
1( ; )t t tQ x ξ and 

1( )t txQ are 

convex function of
1tx  when ( ; )t t tc x ξ  is convex. Thus 

we can create piecewise linear functions of 
1tx to 

approximate 
1( ; )t t tQ x ξ  and 

1( )t txQ . 

Given a feasible solution 
1

l

T x  of stage 1T  , solving 

problem (19) and its dual problem 

, 1
0

1 1

( ; ) sup [ inf ( ; )

( ( ))]

T

l

T dual T T T T T
u

T l

T T T T T T

Q c

u f




 

 

 

x
x ξ x ξ

L x M x ξ

 (23) 

we can get the Lagrange multiplier 
1( ; )l

T Tu x ξ .  

Lemma 1[12]: Consider problem 

( ) min ( )

. . .

G g

s t



 

y
x y

Ax By f
                  (24) 

If ( )g y is a convex function of y , problem (24) is 

feasible, and ( )G  x , then there is no duality gap 

between problem (24) and its dual problem, i.e., 

0

( ) sup ( ),G q



u

x u                           (25) 

where 

( ) inf ( ) ( ), 0,Tq g u    
y

u y u Ax By f  

and there exits at least one Lagrange multiplier u , such 

that ( ) ( )G qx u . Moreover, ( ) ( ) ( )TG G  ' '
x x u A x x , 

i.e., ( )T Gu A x , where ( )G x means the subgradients 

of function ( )G x  at x . 

With Lemma 1, we have 

1 1

1 1 1 1

( ; ) ( ; )

[ ( ; )] ( ).

l

T T T T T T

l T l

T T T T T

Q Q 

   

 



x ξ x ξ

u x ξ L x x
     (26) 

Using (26), we can construct a piecewise linear 

approximation (27) for
1( )T T xQ : 

1

1 1

( ) min

. . ( ), ,

T T

l l l

T T T Ts t g l




 



 



   

x

x x

Q
(27) 

where 

1[ ( ; )]
T

l l

T T T Tg E Q 
ξ

x ξ and  1 1[ ( ; )]
T

l l T

T T T TE  
ξ

u x ξ L

. 

Similarly, for 1, 2,...,2t T T   , given some feasible 

solution 
1

l

tx  of stage 1t  , we can solve the following 

approximate problem: 

1

1 1

1 1

( ; ) min ( ; )

( )
. .

( ), ,

t
t t t t t t

t t t t t t

l l l

t t t t

Q c

f
s t

g l



 



 

 

 

 

   

x
x ξ x ξ

L x M x ξ

x x

(28) 

and get Lagrange multiplier *

1( ; )l

t tu x ξ . Approximation 

function 
1( )t txQ can be constructed in almost the same 

way: 

1

1 1

( ) min

. . ( ), ,

t t

l l l

t t t ts t g l



 



 



   

x

x x

Q
      (29) 

where   

1[ ( ; )]
t

l l

t t t tg E Q 
ξ

x ξ and  *

1 1[ ( ; )]
t

l l T

t t t tE  
ξ

u x ξ L . 

After constructing a piecewise linear approximation of 

2 1( )xQ , we can solve the following problem (30), which is 

an approximate problem of (22): 

0
1 0 1 1 1 1 2 1

0 0 1 1 1 1

( ; ) min ( ; ) ( )

. . ( ).

Q c

s t f

 

 

x
x ξ x ξ x

L x M x ξ

Q
         (30) 

The solution of (30) is an approximated optimal solution 

of (22). 

In fact, to make the approximated optimal solution 

closer to the real one, more and more cuts should be added 

iteratively. The detailed steps of NSDDP algorithm can be 

found in [12]. 

The NSDDP algorithm decomposes large-scale problem 

generated from the scenario tree into numbers of 

small-scale problems. It sacrifices spaces to make 

large-scale problems be solved but computational time cost 

does not decrease like the scale. There is an exponential 

increase in the time consumption and in needed memory 

along with the increase of time horizon. The reason is that 

NSDDP algorithm divides the total optimization problem 

into very small but interconnected sub-problems and the 

number of sub-problems equals to the number of edges in 

scenario tree. 

For a scheduling problem with 12 stages, even if the 

number of possible values of ξ  in each stage is 4 

(corresponding to critical, dry, normal, and above normal 

situations), there are 12(4 1) / 3 5592405  sub-problems. 

Four possible values of each random variable are not 

enough to describe a continuous probability distribution. 

But with more values, the curse of dimension difficulty 

needs to be overcome. There is a trade-off between the 

desired precision of the results and a manageable size. 

D. The-closer-the-more Framework 

In fact, our estimation of natural inflows which happens 

in a far future can hardly achieve satisfactory precision. 

Only for near future, we have relative accurate distribution 

of natural inflows. From this perspective, we propose 

the-closer-the-more framework for constructing scenario 

trees, as shown in Fig. 5. In this framework, each of the 

random variables in the first nearn  stages has multiple 

possible values while each one in the rest stages takes its 

expectation as its unique possible value. This framework is 

more in line with reality. Moreover, with 
nearn fixed, this 

framework can help to avoid the curse of dimensionality as 

T  increasing. 
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Denote ( 1,2,..., )
i nearn i n
ξ

as the number of possible 

values for 
iξ  respectively. Then the number of 

sub-problems (also the number of nodes on scenario trees) 

is 

1 1 2 1 2
1 (1 ( ))

nnear
nearn n n n n n T n     

ξ ξ ξ ξ ξ ξ
 (31) 

 

Figure. 5.  Framework for scenario tree (
nearn  = 2 in example) 

This number increases linearly with the time horizon T . 

For example, if 4
i

n 
ξ  for each of T  stages, then the total 

number of sub-problems is 12(4 1) / 3 5592405  . Using 

the-closer-the-more framework with 4nearn  , the total 

number is 2133. 

We see that, with the-closer-the-more framework, 

smaller 
nearn can save much more computation. But too 

small 
nearn may cause information losses which at last will 

affect the quality of planning. 

IV. CASE STUDY 

In this part, we present a numerical example to illustrate 

how to solve the planning problems using scenario-based 

NSDDP algorithm under the-closer-the-more framework. 

All these programs are run in MATLAB on a PC with 

Intel® Core™2 Duo CPU E7500 @2.93GHz and 3.21G 

RAM. 

A. Numerical Results of the Decomposition Method 

The hydro-thermal system is as illustrated in Fig. 1. 

12T  , representing 12 months in one year. We set 

4nearn  . Electricity demand and water demand of cities 

are assumed to be known at each stage. The state variables 

are continuous and natural inflows, as random variables, 

are assumed discrete. The given data of the case is shown 

in Appendix. 

The cost function at every stage is 

2

6
2

1

( , ; ) (0.01 0.001 )

(9 4 ).

t t t t t t

ti ti

i

c p p p

o o


 

 

o ξ

             (32) 

It’s a quadratic function. Here, water demand is of 

higher priority than power demand. So we set the 

coefficients of water demands much larger than that of 

power demand. We need to meet the water demand as 

much as possible and then try to generate more electricity. 

We simulate the decision-making process for each 

month of one year. In the process, we assume the decision 

is executed at the end of each month. Also, we assume, at 

the end of stage ( 1,...,12)t t  , natural inflows in stage t  

become known. Hence, random variables 
tξ has been 

realized at the end of stage t . Each of 1,..., neart t n ξ ξ  takes 4 

realizations, and 1,...,neart n T ξ ξ  are assigned with their own 

expectations respectively.  

The 4 realizations of random variables represent 4 levels 

of water resources: critical, dry, normal, above normal. 

The twelve months include wet season, normal season and 

dry season. May. Jun. Jul. Aug. Sep. belong to wet season. Mar. Apr. 

Oct. Nov. belong to normal season.  Jan. Feb. Dec. belong to dry season. 

In wet season the average natural inflow is the largest and 

that of dry season is the smallest.  

We compute three kinds of realization of whole year 

natural inflows, namely best case, worst case and random 

case. For the random case, when time stamp moves to 

stage t , the natural inflow of that stage is generated from 

the probability distribution. For the worst (best) case, 

realization of natural inflow at every stage is the critical 

(above normal) one. 

In the first stage, the optimal solution for the random case 

is obtained within 8 iterations as shown in Fig. 6. 

The total costs of all stages for the three different cases 

are in Table I. 

TABLE I.  TOTAL COST IN FOUR CASES 

  Best case Random case Worst case 

Total cost 60351.87 70664.33 89054.63 

TABLE II.  WATER SHORTAGE OF EACH CITY 

Stage City1 City2 City3 City4 City5 City6 

1 39.42 39.15 39.4 39.34 39.37 39.41 

2 38.97 38.78 38.59 38.8 38.76 38.65 

3 41.75 41.52 41.1 41.49 41.28 41.55 

4 43.19 43.04 42.68 42.87 42.88 42.89 

5 40.38 40.57 40.39 40.38 40.6 40.3 

6 43.18 43.02 43.08 43 43.04 43.01 

7 39 40.79 36.54 39.08 38.16 41.45 

8 42.13 42.76 42.5 42.9 43.02 42.57 

9 43.17 42.95 43.01 42.97 42.95 43.04 

10 37.93 38.17 37.72 37.85 37.93 38.23 

11 39.77 39.4 38.59 39.33 39.25 41.29 

12 44.49 44.46 43.77 44.49 43.77 50.74 

 

Actually, if the shortages of all cities are almost the same, 

the total cost can be minimized according to the convex 

property of quadratic functions. 

Water shortage of each city in every stages in the worst 

case are shown in Table II. 
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Even though the water demands of cities are quite 

different from each other, their water shortages have small 

differences.  
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Figure. 6.  Convergence of the first stage optimization problem 

If the cost function is in a linear form, for example, 
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Then we obtain the water shortage as below: 

TABLE III.  WATER SHORTAGE OF EACH CITY 

Stage City1 City2 City3 City4 City5 City6 

1 107.00  200.00  102.95  130.07  146.78  91.85  

2 102.00  194.00  0.00  196.78  0.34  90.28  

3 93.00  208.00  97.69  1.48  99.12  0.11  

4 93.00  204.00  100.96  155.30  154.77  0.14  

5 73.16  34.34  0.00  182.82  0.00  98.29  

6 0.00  0.00  0.00  0.00  0.00  0.00  

7 0.00  0.00  0.00  0.00  0.00  0.00  

8 0.00  0.00  0.00  0.00  0.00  0.00  

9 0.00  0.00  0.00  0.00  0.00  0.00  

10 0.00  0.00  0.00  0.00  0.00  7.10  

11 0.00  0.00  0.00  0.00  0.00  88.85  

12 92.00  54.04  34.67  0.00  0.00  34.09  

 

We can see that, linear cost function cannot help to 

strike a balance in water consumption among cities over 

the planning horizon. Moreover, the total water shortage is 

larger with linear cost function as shown in Table IV. 

TABLE IV. TOTAL WATER SHORTAGE UNDER DIFFERENT COST 

FUNCTION 

  quadratic linear 

total water 

shortage 
2962 3269 

B. Influence of the Annual Water Consumption (AWC) 

Constraint 

We compare the solutions of the optimal scheduling 

problems with and without the constraint over the planning 

horizon under worst case. The water shortages without 

AWC constraint are in Table V. 

Without water quota, water shortage is relatively less. 

Only downstream city, city 6, suffers bad water shortage. 

Since there is no limit in water consumption, upstream 

cities will use water to meet their demands and less water 

flows downstream. 

TABLE V.  WATER SHORTAGE OF EACH CITY 

Stage City1 City2 City3 City4 City5 City6 

1 0.0  0.0  0.0  0.0  0.0  28.5  

2 3.6  3.6  0.0  6.5  1.4  51.9  

3 0.0  0.0  0.0  0.0  0.0  47.8  

4 0.0  0.0  0.0  0.0  0.0  54.4  

5 0.0  0.0  0.0  0.0  0.0  30.3  

6 0.0  0.0  0.0  0.0  0.0  27.7  

7 0.0  0.0  0.0  0.0  0.0  15.5  

8 0.0  0.0  0.0  0.0  0.0  22.1  

9 0.0  0.0  0.0  0.0  0.0  35.8  

10 0.0  0.0  0.0  0.0  0.0  52.9  

11 2.7  2.7  0.0  4.0  0.0  57.4  

12 46.6  46.6  15.8  50.0  12.8  77.6  

 

Annual water quantity that goes into downstream 

regions are as follows. 

TABLE VI. WATER FLOW TO DOWNSTREAM REGIONS 

  with AWC without AWC 

downstream water 3686.42 1993.03 

 

Without AWC constraint, downstream regions get much 

less water. This comparison shows that AWC can help to 

allocate water resource fairly among upstream and 

downstream regions. 

V. CONCLUSION 

In this paper we propose the-closer-the-more framework 

for constructing the scenario tree for long-term planning 

problem of hydro-thermal systems. The idea of this 

framework, the closer the more, comes from the innate 

character of long-term planning problems. Then we apply 

stochastic dual dynamic programming to get the optimal 

planning and update the planning when new accurate data 

of natural inflows become available. The-closer-the-more 

framework can help reduce the computation complexity of 

the planning problem. Analysis and case study show the 

efficiency and practicability of our method. 

APPENDIX 

We list out the data of the testing case in section IV. 

Table VII presents parameters of reservoirs. Table VIII 

presents water demand and electric power demand. Inflows 
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from upstream river and natural inflow in different 

situations are shown in Table IX, X, XI, XII. 

TABLE VII.  RESERVOIR PARAMETERS 

Reservoir v0 vmax vmin vfinal rmax η 

1 1050 1300 1040 1000 600 0.9 

2 950 1100 880 900 500 0.85 

3 900 1050 840 850 500 0.93 

4 850 1000 800 800 600 0.87 

5 800 950 760 750 600 0.9 

6 800 950 760 750 500 0.85 

7 750 900 720 700 500 0.93 

8 750 900 720 700 600 0.87 

9 700 850 680 650 600 0.93 

10 650 800 640 600 500 0.87 

TABLE VIII.  WATER DEMAND AND ELECTRIC POWER DEMAND EVERY 

MONTH 

month dw1 dw2 dw3 dw4 dw5 dw6 de 

1 107 200 103 197 147 92 3200 

2 102 194 91 200 144 94 4400 

3 93 208 100 209 140 101 3600 

4 93 204 101 198 157 109 3600 

5 96 196 100 197 152 107 4400 

6 90 207 91 197 146 104 4400 

7 91 197 105 203 152 92 4800 

8 107 202 92 200 142 97 5200 

9 97 194 109 195 154 103 4000 

10 100 196 103 192 157 104 3600 

11 108 202 94 208 146 101 3200 

12 92 203 103 208 155 91 3200 

TABLE IX.  WATER FROM UPSTREAM INFLOW 

  above normal normal dry critical 

Wet Season 1500 1200 900 600 

Normal Season 1000 800 600 400 

Dry Season 200 160 120 80 

TABLE X.  NATURAL INFLOW DISTRIBUTION DRY SEASON 

Reservoir above normal normal dry critical 

1 51 37 38 17 

2 49 35 33 26 

3 52 30 23 16 

4 52 31 38 20 

5 44 48 32 24 

6 49 30 37 13 

7 50 46 36 13 

8 58 30 38 11 

9 54 38 25 29 

10 51 45 38 17 

P 0.35 0.4 0.15 0.1 

TABLE XI. NATURAL INFLOW DISTRIBUTION IN WET SEASON 

Reservoir above normal normal dry critical 

1 85 61 59 44 

2 86 66 59 45 

3 75 69 65 46 

4 86 69 69 46 

5 79 77 53 41 

6 84 60 69 49 

7 80 72 63 52 

8 71 67 54 46 

9 85 72 50 51 

10 89 79 58 57 

P 0.35 0.4 0.15 0.1 

TABLE XI.  NORMAL NATURAL INFLOW DISTRIBUTION 

Reservoir above normal normal dry critical 

1 66 47 40 38 

2 61 48 48 40 

3 69 62 45 48 

4 55 61 49 33 

5 61 61 40 36 

6 70 64 52 44 

7 63 64 40 30 

8 57 53 38 46 

9 63 52 40 44 

10 59 46 48 41 

P 0.2 0.3 0.3 0.2 
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