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Abstract—In order to enable the standard set-up used in the 

training and the practice of minimally invasive surgery 

procedures to be more immersive, it is necessary to design 

and develop an interactive surgeon computer interface. In 

this paradigm, visual tracking of the surgical instrument 

takes the center stage in design of such an interface. In this 

paper, we present a novel 3D visual tracking system using a 

single endoscopic camera. 2D feature recognition and 

stochastic approach are applied to assist the tracking system 

and the 3D reconstructed model of instrument is also 

provided. Two tracking algorithms based on standard 

Kalman filter and extended Kalman filter are proposed and 

compared in the article. The performance of the proposed 

tool tracking algorithms are evaluated and discussed using 

both emulated and video footage of the actual surgical 

environment. The results show our methods can track the 

objective well in “Good” quality scenes and those scenes with 

strong contrast between tool and background.  

 
Index Terms—minimally invasive surgery, Image tracking, 

Kalman filter.  

 

I.  INTRODUCTION 

Owing to the technological progress in robotics, 

computer vision, optics and biomaterials, the appearance 

of a modern surgical technique, minimally invasive surgery 

(MIS), has brought new methods and more possibilities to 

medical therapy. In comparison with conventional open 

surgery, MIS is performed through tiny incisions using 

endoscope and special instruments and has more benefits 

like less transfusions, shorter hospitalization time as well 

as more rapid recovery. However, surgeons also have to 

face new challenges brought by MIS such as limited field 

of view, hand-eye coordination and loss of depth 

information.  

To overcome some of these challenges, augmented 

reality technology which merges the virtual objects into 

real world is developed to assist medical therapy. In 

computer-aided surgery, surgeon computer interface (SCI) 

is the crucial part which can provide 3D visual 

enhancement to facilitate surgeons with their image 

management and surgical planning. A real-time hand 

gesture system called Gestix for medical image 

manipulation is developed collaboratively by Ben-Gurion 

University of the Negev and Washington Hospital Center 

[1]. UNC Chapel Hill offers an interactive, 3D stereo 

needle insertion guidance system to help surgeons with 
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intra-operative needle insertion during tumor resection [2]. 

Another example is the da Vinci Surgical System made by 

Intuitive Surgical, Montain View, CA, USA. Stereo 

camera is utilized in its 3D HD Vision system which 

provides a virtual extension of the surgeon’s hands and 

eyes into the patient’s body. Although stereo photography 

shows its advantage in 3D image capture and object 

reconstruction, it’s not quite popular in clinical application 

because of its high cost.  

In any design of SCI, visual tracking is critical to 

interactive operation since the manipulation of 

superimposed virtual objects in the real scene is based on 

the tracked information. In general, the tracking 

approaches can be categorized into bottom-up and 

top-down procedures. In bottom-up procedure, the target’s 

position is located by extracting feature of the target, such 

as edges, corners and colors, from image sequences. This 

kind of tracking methods include color-based tracking [3], 

contour-based tracking and motion history image (MHI) 

method [4]. The drawback of these methods is its inability 

to deal with tracking in a clustered and complex 

environment. Another group of tracking is top-down 

process. They not only make use of targets’ salient features 

but also involve prior information about the object. A 

probabilistic Condensation algorithm is presented by Remi 

W. et al in [5] to track the surgical instrument during a 

laparoscopic surgery. Christophe D. et al address a 

real-time segmentation method to detect surgical 

instruments inside the abdominal cavity based on joint hue 

saturation color feature [6], [7]. In [8], Sandrine V. et al 

propose a method to detect the instrument using 

information on the 3D position of the insertion point of an 

instrument into the abdominal cavity. This method is based 

on the shape of the instruments rather than their color. 

Cano et al design a projective model to achieve 3D 

tracking of laparoscopic tools using 2D information of the 

image [9]. 

In our previous work [10], four possible methods 

including Camera-based tracking, pose estimation, MHI 

and Particle filter are studied for tracking instruments with 

a single endoscopic camera in an in-vitro setting. In this 

paper, we present a novel real-time 3D visual tracking 

system. The system utilizes 2D feature recognition as well 

as stochastic approach to track a single surgical instrument 

under a single endoscopic camera and reconstruct the 3D 

pose of the instrument using projective geometry [9]. Two 

tracking algorithms based on standard and extended 

Kalman are proposed. Given the complexity of the real 

surgical scenes and the adequate scene magnification 
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which is offered through the endoscopic lenses, our work is 

focused on scenes where the tool has adequate surgical 

motion space. 

The remaining of the paper is organized as follows. 

Section II shows some preliminary studies including 2D 

feature recognition and 3D pose of the tool reconstruction 

before we implement tracking algorithm. Section III 

introduces the two surgical tool tracking methods based on 

Kalman filter. Experimental studies of tracking results and 

global monitoring part are presented in Section IV and V 

under both emulated and real surgical environment. 

Conclusion and future work is proposed in the end. 

II.   PRELIMINARY STUDIES 

Before we present the proposed visual tool tracking 

method, some preliminary studies are introduced first in 

this section. This part of work includes how we reconstruct 

3D pose of a single surgical tool making use of its 2D 

features extracted from the projective plane.  

A. 2D Feature Recognition 

In order to know the 3D location of the surgical tool with 

respect to endoscopic camera, we need to find where the 

tool is in 2D projective plane (image plane). Considering 

the geometrical structure of general surgical tool, we 

assume the tool is uniformed cylindrical shape with known 

physical diameter. In 2D projective plane, the tool can be 

described as two edges, a midline and a tip point. Once we 

detected two edges of the tool in image plane, the midline 

of the tool then can be calculated from these edges and the 

tip of the tool can also be found along the midline.  

To calculate tool’s midline, some preprocessing steps 

are needed in order to extract edges of the tool. Generally, 

the background in real endoscopic surgery contains images 

of the organs and tissues. Considering this unique feature 

of the surgical site, we split the original images into three 

single images where each of them contains information 

only from one color channel (red, green or blue). Then we 

just use the red channel image so that the details in 

background can be blurred. From our experimental study, a 

binary filter is added on red channel image to locate the 

tool’s position since, in general, the color of the surgical 

tools are different from the background images (e.g. dark 

black or gray color material). Canny filter is then applied 

on the binary image and is followed by Hough transform to 

detect the edges of the tool. After edge extraction, the 

location of the midline of the tool is easy to compute using 

standard description of a line located in x-y plane: y=mx+b. 

To locate the tool’s tip, we conduct a 1D edge detection 

along the segmented mid-line of the tool. Since the tool is 

uniformly black while the background is brighter, the tip is 

localized at the sudden change of the intensity. To avoid 

the reflection spot and side effect, some noise reduction 

filters are implemented to reduce such effect. To search for 

the tip location, both x and y directions in image plane are 

considered. Generally, we start searching along x direction 

(left to right). However, when the tool is almost vertical in 

the scene, the search is then along y direction. To make the 

algorithm works better, we split the two situations 

depending on the slope of tool’s midline.  

 

Figure 1.  3D projective model (left) and its transverse section 

(right).

 

Figure 2.  (a) 2D feature recognition and (b) 3D reconstructed tool 

rendered in OpenGL. 

B. Spatial Description of the Surgical Tool-tip 

Given the physical diameter of the tool and its 

segmented edges, we can obtain depth information and 

relative position between the tool and the endoscopic 

camera based on 3D projective geometry. The projective 

model is shown in Fig. 1. In this model, C is the camera 

center and T is the tip of the tool in 2D image with its 3D 

coordinate P. E1 and E2 are two edges of the surgical tool 

projected on the image plane. N is the perpendicular foot 

from camera to tool.   is the angle between the physical 

tool with respect to the image plane. Two tangential planes 

1 and 2  including one of the tool’s edges and the 

camera vector to the edge respectively are defined. First we 

need to calculate the normal vector to each tangential plane 

through cross product between the edge and the camera 

vector to the edge. From the normal vectors we obtained, 

the angle 
N  can be calculated. By utilizing the known 

vectors and physical diameter of tool, we are able to extract 

both the 3D location of the tip point and the orientation of 

the tool. For detailed derivation, please refer to [11]. Fig. 2 

displays 2D detected features and 3D reconstructed tool.  

C. Surgical Tool Tracking Problem 

In real surgical operation, the surgeon may want to know 

the 3D location of the surgical tool to help him measure the 

distance between tissue and tumor. Following previous 

methodology, a simple approach to track tool’s motion is 

to extract edges and calculate tip frame by frame. However, 

this approach is not efficient and is sensitive to the effect of 

random noise in the image (e.g. variation in illuminant). 

According to the color theory [12], the color space is 

changing under different illuminant. In the actual scene 

from the surgical procedure, the color in the image may 

(a) (b) 
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have different RGB proportion which can lead to artifact in 

canny edge detection. Other possible noise is from 

reflection. Metal used in the design of some of the surgical 

tools and light reflection from the tissues and organs can 

create some “light reflection area” which also results in 

unwanted edges. Fig. 3a is an example of miss-detection 

under noise. When encountering with a number of selected 

edge segments, it becomes very challenging to identify the 

correct ones belonging to tool.  

 

 Figure 3.  Comparison of 2D feature recognition with and without 

Kalman filter. (a) is the detection result without Kalman filter. The red 

lines in (b) indicate the edges extracted as tool’s edges. (c) is the 

detection result using Kalman filter and (d) is its labeled canny edge 

image. 

To deal with the random effect of noise in tracking 

problem, a stochastic framework needs to be developed to 

estimate the location of the tool based on its edge 

description. In general, we can assume that the tool’s 

motion is within the limits of the required surgical task. 

Moreover, the noise is assumed to be independent, white 

and with normal probability distribution. The noise 

covariance is also assumed to be constant. In the following 

section, a Kalman filter, owing to its simplicity and 

reduced computational complexities, is used to track the 

location of midline of the tool. Fig. 3c shows an example of 

the tracking result using proposed in the following Kalman 

filter. 

III.   KALMAN FILTER TRACKING METHODS 

In this section, we present two feature-based methods to 

track single surgical instrument during MIS. These 

methods utilize different mathematical framework namely 

standard Kalman filter and extended Kalman filter 

respectively. 

A.  Kalman Filter Method 

In general, Kalman filter can be defined by a set of 

relationships providing an efficient recursively 

computational method to estimate the state of process [13]. 

As we mentioned in previous section, the midline of the 

tool is chosen as the desired state which needs to be 

estimated. This line can be represented as a linear equation 

y mx b   where m is the slope and b is the intercept in the 

image plane. The state vector at the current time k  is 

defined as [ , , , ]T

kX m b m b   where ( , )m b  denotes the 

first derivative of the slope-intercept parameters. The 

tracking system is composed of time update (prediction) 

and measurement update (correction). For each frame, the 

location of tool’s midline is predicted from previous 

frames and the system model we obtained is then modified 

according to the selected measurements. 

In update phase, both the priori estimated state vector 

ˆ
kX   and priori estimated error covariance 

kP  are provided 

from the previous time 1k  . The prediction equation is 

defined as 

1
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where 
1kW 
 is process noise with the noise covariance Q  

and A is transition matrix.  

Before we correct the priori value ˆ
kX   and 

kP  , we need 

to actually measure the process through image processing 

of the surgical scene to obtain 
kZ , which is known as the 

measurement, to generate an improved posterior state 

estimate. Corresponding to the state vector we defined, 

here, the real location of tool’s midline is used as the 

measurement [ , ]T

kZ m b  which can be expressed as
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where 
kV  is measurement noise with the noise covariance 

R  and H is measurement matrix. During the 2D feature 

recognition, the image after Canny filter contains both 

useful and noisy information. To filter out the edges that 

unlikely belonging to the tool, the predicted midline is 

utilized. If the difference in the slopes between the possible 

edge and the predicated midline is smaller than a threshold 

and its edge point is close enough to the midline, we then 

assume this edge belongs to the tool. Once the edges are 

filtered, we classify the remaining lines to be either left or 

right edge and convert them into the slope-intercept form. 

After finding out the measurement 
kZ , the state model is 

corrected according to correction equations  
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where K  refers to gain matrix. In the end of each recursion, 

the corrected posterior value ˆ
kX  and 

kP  turn to be the 

input of next time 1k   . Fig. 4 shows the Kalman tracking 

result with some preprocessing steps. In Fig. 4d, the white 
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line is the corrected midline of the surgical tool and the 

green line is the predicted one.  

 

 Figure 4. Different steps in the tracking algorithm. (a) Red channel 

image, (b) binary image, (c) canny image and (d) tracking result. 

The initialization of Kalman filter requires information 

from the two edges of the first frame. The initial midline is 

calculated based on these two edges detected. Once the 

tracking is lost, the system then re-initializes the Kalman 

filter from the frame after the lost one.  

B. Extended Kalman Filter Method 

Though the standard Kalman filter tracking algorithm 

performs well in most of the cases, it still has some 

limitations. For example, when tool moves from horizontal 

direction to vertical direction, both slope m and intercept 

b of tool’s midline increase rapidly and nonlinearly since 

the both of them tends to be infinite in vertical orientation. 

This position change is easy to introduce large error in 

tracking system. One possible solution is to describe the 

lines in their polar parameters  and   with respect to the 

image frame which is presented in Hough transform [14]. 

Each line passing through the given point A(x, y) can be 

expressed as  

cos( ) sin( )x y                               (4)
 

where  is the perpendicular distance of the line to the 

origin and   is the angle between the line and the 

reference axis. Since the representation of line is nonlinear, 

an extended Kalman filter is required in the new tracking 

algorithm. This kind of nonlinear Kalman filter model is 

widely used in various fields such as unmanned aerial 

vehicles navigation [15] and lane marking detection [16, 

17]. In [18], Steven et al. has presented a combined 

tracking method using Kalman filter and Hough transform 

to detect the edges of moving objects. In this paper, similar 

method is used to track two edges of moving tool. 

Similar to standard Kalman filter, extended Kalman 

filter also consists of prediction and correction parts. Here, 

the state vector is defined as 

1 1 2 2[ , , , , , , , , ]T

kX x y u v w      where ( , )x y  is the 

rotation center of tool’s motion in the image plane. We 

divide the tool’s movement into translation and rotation 

where ( , )u v are defined as the translational velocity along 

x and y axis respectively and w is the rotational velocity. 

Moreover, ( , ) ( 1,2)i i i   are referred to as the line 

parameters of two edges of the tool. To simplify the 

computation, we assume both translation and rotation have 

constant speed. For current time k , the rotation center has 

been translated from 
1 1( , )k kx y 

at speed
1 1( , )k ku v 

 . Then 

the state vector at time k  has the form 
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The measurement we choose here is the location of two 

edges 
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The transition matrix A and measurement matrix H are 

Jacobian matrices defined as  
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The Hough space is defined by polar parameter ( , )  . 

Given a point ( , )P x y  in the Cartesian image space, we can 

draw a corresponding curve (i.e. sinusoids) in Hough space 

which indicates all the possible lines in the image space 

passing through the point ( , )P x y  . For those points which 

are collinear in the image space, their corresponding curves 

in the Hough space will intersect at a common point ( , )   . 

These intersections are called peaks. Generally, the Hough 

space is stored using a matrix whose element values 

indicates the number of curves passing through this point 

( , )  . Peaks are expressed as local maxima in this matrix 

which correspond to straight lines in image space.  

Since the tracking is conducted inside a human body 

where the rigid surgical tool is surrounded by soft organs 

and tissue, we assume that the surgical tool has most salient 

line structure which means the two maximum peaks 

represent two edges of the tool. For frame k , the estimated 

peak position from frame 1k   is used to restrain the area 

of searching the real location of edges. Part of the Hough 

Transform matrix can be found in Appendix. The peak 

searching area is restrained inside the red rectangle 

according to the estimated state vector from frame 1k   

and the circles indicate the two maximum peaks we found 

inside this area. The measure 
kZ derives from these two 

peaks and is used to correct the predicted peak position for 

frame k .  

IV.    EXPERIMENTAL RESULTS 

The standard Kalman filter algorithm is implemented on 

Visual Studio 6.0 platform. OpenCV is applied for image 

(a) 
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processing and tracking calculation including edge 

detection and Kalman filter update. For the interactive 

interface, we use OpenGL to overlay virtual menu on the 

real endoscopic environment. Moreover, OpenGL is also 

utilized to render 3D reconstructed tool model during 

tracking. This system can work both on the real-time 

in-vitro captured image sequences and recorded actual 

surgical procedures. For the real-time case, images are 

captured by the Karl Storz Supercam 9050B CCD color 

camera. Illumination is provided by the Karl Storz 615 

xenon light source through a fibre optic cable. The light 

intensity we set during tracking is 100. Matrox Imaging 

Library (MIL) is responsible for image acquisition, camera 

calibration and image format transition. The extended 

Kalman filter method is conducted in Matlab and it returns 

two edges as tracking results without midline indication as 

well as 3D reconstruction. 

First of all, to validate the accuracy of visual tracking 

results, we compare the 3D reconstructed tool’s tip 

location with the ground truth. As shown in Fig. 5, several 

white markers with different heights are placed on a grid 

and red points on the top of these markers are defined as 

the ground truth. The 3D coordinates of these red points 

are measured from the grid and its height. When we use the 

tool to point at these points under endoscopic camera, the 

system returns the estimated 3D tip coordinates. In our 

experiment, 6 groups of locations from 6 different depths 

are tested. For each group, we fixed the depth and selected 

10 random points with variant x-y coordinates. Table I 

shows the error between estimated tip position and ground 

truth.  

TABLE I.  GROUND TRUTH EXPERIMENTAL RESULT 

 Mean error(mm) Std. error(mm) 

X -0.9725 1.4008 

Y -0.0931 1.8087 

Z -0.7088 3.0164 

 

 

Figure 5.  3D reconstructed tip location validation using ground truth. 

After the ground truth experiment, we use emulated 

endoscopic environment to test the tracking performance 

of two different Kalman methods. The ideal images are 

grabbed on a clean table where no objects in the 

background. Fig. 7 demonstrates the tracking results using 

these methods under ideal environment. The tracking 

success rates (tracked frames/200 frames) for standard and 

extended Kalman filter are 90% and 80% respectively. To 

simulate surgical environment, the tool is put in a plastic 

abdominal model. As can be seen in Fig. 7 (c) and (d), both 

methods also perform well in this case. The tracking 

success rates are 86% and 70% which has a slight decline. 

 

Figure 6.  Cases when both methods fail in tracking. (a) is for standard 

Kalman filter method when testing real video No.6 and No.7 and (b) is 

for extended Kalman filter method when testing real video No.3 and 

No.9. 

 

Figure 7.  Tracking results using two Kalman filter methods under ideal and emulated environment. (a) and (b) list some frames under ideal environment. 

(c) and (d) are under emulated environment .(a) and (c) are for standard Kalman filter. (b) and (d) are for extended Kalman filter 
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To test the performance of two tracking methods we 

presented in real surgical environment, we have chosen 10 

recorded real endoscopic and laparoscopic video streams. 

Each of them lasts for about 10s containing 200~300 

frames. The standard method can almost track the tool with 

60% tracking success rate when the frame has strong 

contrast between background and objective (Fig. 8). 

However, it’s sensitive to the shadow surrounding the tool 

(Fig. 9c). Moreover, the color and material of the tool also 

influence the tracking result of standard method (Fig. 9d). 

In comparison, extended method is robust to these factors 

but it’s easy to lose tracking when the environment 

containing similar line structures. For those more complex 

videos which are usually contaminated with blood, smoke 

and tissues, both two methods failed. Furthermore, when 

the tool is moving at a rather fast speed both methods failed 

(Fig. 6b-2). Sample video under ideal environment is 

uploaded on the website http://www.sfu.ca/~jza102 . More 

clear videos will update in the future. 

V.    GLOBAL MONITORING FOR QUALITY OF SURGICAL 

TOOL TRACKING 

Table I lists the tracking success rate when we track a 

single tool in ideal environment, emulated environment 

and real surgical environment respectively. The tracking 

task turns to be challenging when we cope with the real 

surgical cases. For some real videos like No.7~No.10, both 

methods failed due to the complex surgical scene such as 

low contrast between background and metallic tool, fast 

moving tool, smoke noise and so on. 

TABLE II.  TRACKING PERFORMANCE OF TWO KALMAN FILTER METHODS UNDER EMULATED AND REAL SURGICAL ENVIRONMENT 

 Tracking Success rate (frames/200 frames) 

 Ideal 

environment 

Emulated 

environment 

Real video No.1 

Little shadow 

Dark tool 

Real video No.2 

Strong contrast 

Dark tool 

Real video No.3 

Vessel  

 Dark tool 

Real video No.4 

Partially occlusion 

Metallic tool 

KF 90% 86% 30% 72% 62% Fail 

EKF 80% 70% 55% 43% Fail 60% 

 

 Real video No.5 

Strong contrast 

Dark tool 

Real video No.6 

Blood  

Dark tool 

Real video No.7 

Low contrast 

Metallic tool 

Real video No.8 

Smoke 

Metallic tool 

Real video  No.9 

Fast moving tool 

Real video No.10 

Complex 

background 

KF 65% 20% Fail Fail Fail 10% 

EKF 37% 18% Fail Fail Fail Fail 

Note: KF ---- Kalman filter method, EKF ---- extended Kalman filter method 

 

Figure 8.  Tracking results of standard Kalman filter method when frames with strong contrast between objects and background. (a) is the tracking 

results in different frames from real video No.2. (b) is the tracking results in different frames from real video No.3. 

 

Figure 9.  Cases when extended Kalman filters performs better. (a) shows tracking results of different frames from real video No.1 using extended 

Kalman filter method. (b) shows tracking results of different frames from real video No.4 using EKF. (c) and (d) are the tracking results of the same 

videos using standard Kalman filter method. 

(a-1)  (a-2)  (b-1)  (b-2)  

(c-1)  (c-2)  (d-1)  (d-2)  

(a-1)  (a-2)  (b-1)  (a-2)  
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Figure 10. Surgical scenes are classfied into three levels where green icon 

indicates “Good” image quality (real video No.2), yellow icon is for 

“OK” case (real video No.4) and red icon is a warning for “Bad” image 

quality (real video No.10). 

To measure the natural image quality, there are three 

categories of methods: full-reference, reduced-reference 

and no-reference [19]. The first two methods require a 

reference together with the processed image or video 

which limits their application in image quality evaluation. 

No-reference methods are not relevant to the reference 

image which is of our interest. The existing no-reference 

approaches focus on both global features like image 

histogram and local features like the spread of edges. In our 

case, the measurement is based on line segments.In 

consideration of the application of our tracking algorithm 

which aims to create an interactive surgeon-computer 

interface to provide more information to surgeon during 

MIS, we classify the image quality into three levels (Fig. 

10). The top level is defined as “Good” quality. In this kind 

of scenes, the objective we want to track has strong color 

contrast with image background and there’s no similar line 

structure in the scene. One example is the ideal 

environment and emulated environment. The lower level is 

defined as “OK” quality where the scene contains not so 

much confounding factors which we think our methods can 

also work at an acceptable success rate. Those scenes 

which are full of blood, tissue and multiple instruments are 

classified as the “Bad” quality. As an initial study and to 

assess the image quality in our application, we consider 

both the number and length of line segments in their canny 

images. If the image contains large number of line 

segments such as 50~100 segments and the line segments’ 

length are very short, for example, smaller than 30 pixels, 

the quality is classified into “Bad”. Fig. 4(c) is the example 

for “Good” quality where we can see clear edges are 

detected in that canny image. 

The three image quality levels are indicated by an icon 

on the corner of the scene. Particularly, green is for “Good”, 

yellow is for “OK” and red is for “Bad”. During the 

initialization and tracking, the system first recognizes the 

quality of scene. If the green icon is on, it means the 

surgeon can activate tool tracking module and overlay the 

virtual menu on real surgical scene. In other scenes and 

during the tracking phase, when the icon turns yellow, 

surgeon can also conduct tracking and virtual menu 

interaction. However, the performance of tracking is not 

guaranteed in this case. The red icon is a warning signal for 

the surgeon which tells him that this scene is not suitable 

for tool tracking and the virtual menu function is 

deactivated.  

 

Figure 11. Surgeon computer interface of our visual tracking system.  

Another part of global monitoring is the initialization of 

tracking set-up according to different types of MIS and 

different surgical tools. For example, surgeon can tell the 

system whether the MIS is colonoscopy or laparoscopy and 

whether the tool he uses is dark one or metallic one. After 

inputting this kind of information, the system can choose 

different tracking method to use. Here, extended Kalman 

filter method is ready for tracking metallic tool and 

standard Kalman filter method is for dark tool case. 

VI.   CONCLUSION AND FUTURE WORK 

This paper introduces a novel visual tracking system to 

track the surgical instrument under emulated and real 

surgical environment. Two tracking algorithms based on 

standard and extended Kalman filter respectively are 

compared and both of them perform well in “Good” quality 

scenes like ideal and emulated environment and also those 

scenes with strong contrast between tool and background. 

Fig. 11 shows the application of the tracking results. 

However, they have their own drawbacks when dealing 

with complicated surgical scenes. For example, standard 

Kalman filter is sensitive to the material of tool which 

means it’s easy to track dark tool compared with metallic 

tool. The extended Kalman filter is quite unstable when the 

background contains similar line structures. In our future 

work, particle filter which is less sensitive to image noise 

will be applied in our tracking system. Though the global 

monitoring part can choose the better tracking method for 

different scenes, it’s necessary to develop a more robust 

algorithm where system can fine tune itself to suit the 

tracking environment.  

As the global measurement of image quality is the basis 

to conduct visual tracking and surgeon computer 

interaction, more methods can be explored in our future 

work to assess the scene in a more reliable and 

comprehensive way. On the other hand, we can further 

explore the feature and color space of tracking to present 

combined tracking algorithm which can cope with more 

complex surgical scenes like “OK” quality scenes even 

“Bad” quality scenes. Moreover, multiple instruments 

tracking is also under study in our laboratory. 

(a) 

(b) (c) 
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APPENDIX 

 

Figure 12.  Searching peaks in hough space  
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