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Abstract—This paper presents an efficient method for 

solving the direct kinematics of parallel manipulators that 

follow a defined singularity-free trajectory. Despite the main 

problem is to solve the inverse kinematics, calculating the 

errors between the desired path and the actual path requires 

solving the forward kinematics which is a challenging 

problem. The proposed method combines closed-loop 

Jacobian algorithm with Newton-Raphson method to 

efficiently identify the desired solution. Inverse kinematics is 

solved using the Jacobian algorithm whereas forward 

kinematics is solved using Newton-Raphson method. To 

avoid the numerical instabilities of the Newton-Raphson 

method, the current state of the manipulator is used as the 

initial guess for the next state. This makes the numerical 

solution converges to the correct and desired solution quickly 

with a few number of iterations. The proposed method is 

applied to a 3RRR planar parallel manipulator and the 

simulation results show the effectiveness of the method. The 

algorithms presented in this article can be applied to other 

parallel manipulators.  

 
Index Terms—forward kinematics, inverse kinematics, 

Jacobian, parallel manipulators.  

 

I. INTRODUCTION 

A parallel manipulator typically consists of a moving 

platform that is connected to a fixed base by several limbs. 

The number of limbs usually equals the number of degrees 

of freedom such that every limb is controlled by one 

actuator and all actuators can be mounted at or near the 

fixed base. Because the external loads can be shared by the 

actuators, parallel manipulators tend to have a large 

load-carrying capacity [1]. Also, the positioning accuracy 

of the end-effector of parallel manipulators is only slightly 

affected by errors in the actuators, end-effector of a 

parallel manipulator is its moving platform. Errors tend to 

average in the parallel case, whereas they are cumulative 

for a serial manipulator. All of these factors, and the 

availability of new control and component technologies, 

have resulted in the increasing popularity of parallel 

manipulators.  

However, parallel manipulators are difficult to design, 

since the relationships between design parameters and the 

workspace, and behavior of the manipulator throughout 

the workspace, are not intuitive by any means [2]-[3]. This 

is one of the reasons why Merlet [4] argues that 
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customization of parallel manipulators for each 

application is absolutely necessary in order to ensure that 

all performance requirements can be met by the 

manipulator. 

Following a trajectory of parallel manipulators requires 

solving two kinematics problems, inverse kinematics 

problem and forward kinematics problem. In inverse 

kinematics, the position and orientation of the end-effector 

are given and the active joint variables are to be calculated. 

In the forward kinematics, the joint variables are known 

and the position and orientation of the end-effector are to 

be determined.  Thus to follow a trajectory, first we use the 

desired position and orientation to calculate the active 

joint variables, i.e., solving the inverse kinematics, and the 

obtained values are used to calculated the actual position 

and orientation of the end-effector, i.e., solving the 

forward kinematics. Then, the error between the desired 

and actual pose (position and orientation) of the 

end-effector is calculated. Mostly there is a closed form 

solution for the inverse kinematics for parallel 

manipulators but not for direct kinematics [5]. Although 

the forward kinematics problem has been addressed in 

numerous works, a major portion of them focuses on 

finding all the possible solutions to the forward kinematics 

of certain kinds of parallel manipulators [6]-[9]. These 

approaches usually use algebraic formulations to generate 

a high degree of polynomial or a set of nonlinear equations. 

Then methods such as algebraic elimination, interval 

analysis, and continuation are used to find the roots of the 

polynomial. The forward kinematics problem is not fully 

solved just by finding all the possible solutions. Schemes 

are further needed to find a unique actual pose of the 

platform that fits the path from among all the possible 

solutions [5], [10].  

In the present work, a method is developed that 

combines closed-loop Jacobian algorithm with 

Newton-Raphson to efficiently identify directly the 

desired solution that fits the path.  The active joints 

variables are calculated using closed-loop Jacobian 

algorithm which is preferred over the open-loop Jacobian 

algorithm as the last one suffers from the drift phenomena 

of the solution. Forward kinematics is solved using 

Newton-Raphson method and, to avoid the numerical 

instabilities of this method, the current state of the 

manipulator is used as the initial guess for the next state. 

This forces the numerical solution to converge to the 

correct and desired solution quickly in a few iterations. 

228

Journal of Automation and Control Engineering Vol. 2, No. 3, September 2014

©2014 Engineering and Technology Publishing
doi: 10.12720/joace.2.3.228-233



  

The paper is organized as follows. The manipulator 

geometry and the relations between the inputs and the 

outputs of the manipulator are introduced in Section II. In 

Sections III and IV, the solution of the inverse and forward 

kinematics problems is presented. Section V is devoted to 

analyze the manipulator Jacobian. Two Jacobian 

algorithms are introduced in Section VI. Simulation 

results and a comparison between the proposed schemes 

are presented in Section VII. Finally, conclusions can be 

found in Section VIII. 

II. MANIPULATOR GEOMETRY  

 

Figure 1. 3 RRR parallel manipulator. 

 

Figure 2. Definition of the position and orientation of the moving 
platform. 

The manipulator considered in this work is a 3RRR 

planar parallel mechanism. A schematic diagram of the 

manipulator is shown in Fig. 1. The manipulator geometry 

was presented by the author in a previous article [11] and 

will be repeated here for the convenience of the reader. 

The manipulator consists of a moving equilateral 

triangular platform of length h connected to a fixed 

equilateral triangular base of length d by three limbs. Each 

limb consists of two links; the first link is connected to the 

ground by means of a revolute joint identified by the letter 

Bi and is actuated by a rotary actuator. The three actuators, 

one for each limb, control the three degrees of freedom of 

the moving platform (x, y, and φ), see Fig. 2. Two 

coordinate systems are defined to describe the motion of 

the moving platform. The first coordinate system is 

attached to the fixed base (with origin O and axes x and y) 

and is called the reference frame while the second 

coordinate system is attached to the moving frame (with 

origin O' and axes x' and y'). The pose of the end-effector 

is expressed relative to the reference frame by the position 

vector     [     ]  The input angles   [        ]  is 

represented by the angular positions of the revolute 

actuators measured from the x-axis of the reference 

coordinate system. 

III. INVERSE KINEMATICS 

From the geometry of the manipulator, shown in Fig. 1 

and Fig. 2, a vector loop equation can be written for each 

limb as 

                                   (1) 

where           
Expanding (1), we get 

                 (     )       (    ) (2) 

                 (     )        (    ) (3) 

 

Figure 3.  Definition of the moving plate parameters 

The definitions of the angles   ,   , and     are shown 

in Fig. 3. Squaring (2) and (3) and summing the results, we 

get 

   [                   (    )]
  

          [                   (    )]
 .           (4) 

Now, expanding (4) and putting the result in the 

following form:  

                                      (5) 

where 

            (    )      (     )        (6) 

            (    )      (     )        (7) 

     
                              
      

     
        (    ) (     )  

                  (    ) (     )                       (8) 

Substitute the following trigonometric identities in (5) 

      
   

    
  ,       

    
 

    
  , and       
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we obtain 

(        )  
         (        )         (9) 

Then 

        
  

     √   
     

     
 

       
.              (10) 

Three cases could be found when solving (10). The first 

case when the solution gives two different real roots. This 

means that for each given moving platform location, there 

are two possible configurations for every limb. The second 

case, when it yields a double root, this means that this limb 

is in a fully stretched out or folded back configuration and 

is called the singular configuration. The third case, when 

the solution yields no real roots, the specified moving 

platform location is not reachable, i.e., this location is out 

of the manipulator workspace [1].  

IV. FORWARD KINEMATICS 

The objective of the forward kinematics is to define a 

mapping from the known set of the actuated joint angles to 

the unknown position and orientation of the moving 

platform. For the present manipulator, the joint angles that 

are considered known are the angles formed by the input 

links and the base of the manipulator   [        ]
 . 

The unknown position and orientation of the moving 

platform is described by the position vector   [     ] , 

which defines the location of O' at the center of the moving 

platform in the x' y' coordinate frame. 

Equation (4) describes the relation between the input 

angles   [        ]
  and the corresponding position 

and orientation of the moving platform   [     ] . To 

solve the forward kinematics, Equation (4) is written in the 

following form: 

                                   (11) 

where 

  [        ]
 , 

and 

   [                 (    ))]
   

       [                 (    ))]
                 

where           Equation (11) represents a system of 

nonlinear equations and can be solved using the iterative 

Newton-Raphson method: 

             
              (12) 

where 

  [     ]   and JF is the Jacobian matrix of F with 

respect to   and it can be computed as follows: 

    

[
 
 
 
 
   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  ]
 
 
 
 

                             (13) 

Solution of (11) may not be unique. Also, the solution 

may become divergent, converge to a solution that is not 

the desired one, or take much time to converge to the 

correct solution. In this work, as we are following a 

trajectory, so the solution for the next position is very 

close to the current position and therefore the current 

position is used as the initial guess for the next position. 

This makes the Newton-Raphson method very efficient 

and converges very fast to the desired solution. 

V. JACOBIAN ANALYSIS OF THE MANIPULATOR 

In this section, the analytical development of the 

manipulator’s Jacobian matrix is presented. For each limb, 

differentiating (2) and (3), we get: 

 ̇          ̇      (     ) ( ̇   ̇ )  

               (     ) ̇                                   (14) 

 ̇           ̇      (     ) ( ̇   ̇ )  

               (     ) ̇.                                  (15) 

Solving (14) and (15) to eliminate  ̇ , we get 

   (     )  ̇     (     )  ̇   

     [(     )  (     )] ̇         ̇       (16) 

Equation (16) is written in the matrix form as follows: 

    ̇     ̇                               (17) 

where  

   [

                  [   (     )]

                  [   (     )]

                  [   (     )]
],     (18) 

        , and 

    [

        
        
        

].     (19) 

In the above expression,    and    are two separate 

Jacobian matrices, these matrices can be combined to 

obtain a single matrix that establishes the inverse 

transformation between the input and output velocities:  

  ̇     ̇                             (20) 

where     
     corresponding to the inverse Jacobian of 

a serial manipulator. 

VI. JACOBIAN ALGORITHMS 

Two schemes are used to calculate the joint history for 

following a trajectory. The first scheme uses open loop 

algorithm, i.e., there is no feedback to correct the deviation 

of the path away from the desired one and takes the 

following form: 

               ̇                   (21) 

where J is defined by (20) and  ̇  is the desired velocity of 

the end-effector defined in the operational space.  
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To calculate the deviation of the actual trajectory away 

from the desired one, forward kinematics problem is 

solved to calculate the actual position and orientation of 

the end-effector. Newton-Raphson method, Equation (12), 

is used to solve the system of nonlinear equations 

represented by (11). The open-loop scheme, however, 

suffers from the drift phenomena and as a sequence; the 

location of the end-effector corresponding to the computed 

joint variables differs from the desired one. Closed-loop 

Jacobian algorithm is used in the second scheme to avoid 

the drift phenomena as follows: 

            (  ̇     )           (22) 

where        is the operational space error between 

the desired and the actual end-effector position and 

orientation.  

Equation (22) leads to the equivalent linear system: 

   ̇                    (23) 

where  ̇   ̇   ̇  is the time derivative of the error and 

according to differential kinematics, can be written as 

 ̇   ̇   
   ̇. 

If K is positive definite (usually diagonal) matrix, the 

system (23) is asymptotically stable. The error tends to 

zero along the trajectory with convergence rate that 

depends on the eigenvalues of matrix K; the larger the 

eigenvalues; the faster the convergence, however, 

depending on the sampling time, there is a limit for the 

maximum eigenvalues of K under which asymptotic 

stability of the error system is guaranteed [12].  

VII. SIMULATION RESULTS 

The developed schemes are applied to the present 

manipulator, shown in Fig. 1. The following numerical 

values are used for the different manipulator dimensions. 

                             and      
      . The coordinates of the points of connection of 

the manipulator with the fixed base are: 

  (           )  mm,   (          )   , and 

  (       )   . Let the initial location of the 

end-effector is at   [          ] , where x and y are in 

millimeters and   is in radians. A circular path of radius 

        and a center at the origin (0, 0) is assigned to 

the end-effector. Let the motion trajectory be 

   [

     (  )

     (  )
   

] 

 

 

 

 

 

Figure 4. Simulation results using open-loop jacobian scheme 

where      , and the end-effector makes a complete 

circle in a time of 4 seconds. The mobile platform 

orientation is kept constant during the motion at        

and the integration time was chosen to be        . Fig. 

4a shows the actual and desired trajectory of the 

end-effector, Fig. 4b enlarges a small part of the trajectory 

to show the difference between the desired and actual 

trajectory of the end-effector. The norm of the position and 

orientation errors are shown in Fig. 4c and Fig. 4d, the 

norm of the position error is bounded but the norm of the 

orientation error is increasing with time. Fig. 4e shows the 

time history of the active joints variables. 
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For the closed-loop scheme, the matrix gain   
    {           } is used. The resulting joint positions 

and tracking errors are shown in Fig. 5. Fig. 5a shows the 

actual and desired trajectory of the end-effector, Fig. 5b 

enlarges a small part of the trajectory to show the 

difference between the desired and actual trajectory of the 

end-effector. The position error and orientation errors, Fig. 

5c and Fig. 5d, are radically decreased and both are 

bounded. Fig. 5e shows the time history of the active joints 

variables. 

 

 

 
 

 
 

 

 

Figure 5. Simulation  using closed-loop jacobian scheme.  

For both schemes, Newton-Raphson method was used 

to solve the direct kinematics problem to find the location 

of the end-effector. It was noticed that the number of 

iterations for Newton-Raphson never exceeded 3 

iterations during the simulation of the whole trajectory, 

which means that the using the current state as initial guess 

for the next state forces the solution to converge to the 

desired solution and greatly enhance the efficiency and 

accuracy of Newton-Raphson method. 

VIII. CONCLUSION 

An efficient method for solving the direct kinematics of 

parallel manipulators that follow a defined singularity-free 

trajectory was presented. The proposed method combines 

closed-loop Jacobian algorithm with Newton-Raphson 

method to efficiently identify the desired solution. 

Solving the forward kinematics of parallel manipulators 

results in multiple solutions. Previous research, for 

example [5], focuses on finding all the solutions and then 

uses another algorithm to find the solution that fits the path. 

The present method, unlike the previous ones, finds 

directly the required solution. The method solves the 

inverse kinematics along the given trajectory using 

closed-loop Jacobian algorithm. The forward kinematics 

was solved using Newton-Raphson method and choosing 

the current state of the manipulator as an initial guess for 

the next state forces the solution to converge to the 

required solution that fits the path directly and quickly 

with a few number of iterations (number of iterations 

never exceeded three iterations throughout the whole 

trajectory). The performance of the proposed method was 

investigated. The method is applied to a 3RRR planar 

parallel manipulator and the simulation results showed the 

efficiency and accuracy of the proposed schemes. The 

method presented in this article can be applied to other 

parallel manipulators. 
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