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Abstract—The paper provides the performance analysis of 

the optimal parameters selection for the weighted local 

polynomial approximation (LPA) estimators combined by a 

data-driven adaptive method used for the automatically 

adjusted nonparametric LPA estimator size detection. The 

provided examples show that the LPA estimators upgraded 

by the modified adaptive intersection of the confidence 

intervals (ICI) based method (called the RICI method) 

outperform those based on the original ICI rule, while the 

ICI rule based LPA estimators were known to outperform 

non-adaptive ones with fixed size window length. The 

method’s performance is analyzed in noise environment for 

two signals, showing the modified ICI based LPA estimators 

to be superior to those based on the original ICI method in 

terms of denoising estimation error reduction. The method 

can be applied in various technical fields, including image 

and video filtering, beamforming for phased array radar 

with antenna switching, acoustic echo cancellation, 

instantaneous frequency estimation, etc.  
 

Index Terms—adaptive filtering, signal denoising, signal 

reconstruction, edge preserving 

 

I. INTRODUCTION 

The estimation goal is to detect estimated value as 

close as possible to the true one minimizing the 

estimation error. However, the estimation quality in noisy 

environments is often corrupted by the inescapable 

estimation bias and variance [1]. For biased estimators 

the bias usually cannot be determined in advance since it 

is dependent on the estimated value itself and its 

derivatives [1], [2]. On the other hand, noise 

environments, due to their stochastic nature, often cause 

estimation variance which is usually inversely 

proportional to the bias of the biased estimators [1], [2]. 

Hence, there exists a bias-to-variance trade-off which 

ensures minimal mean squared error (MSE) calculated as 

a sum of the squared bias and the variance [1], [2].  

The estimation of the optimal parameter and 

corresponding bias-to-variance trade-off can be done 

using the non-parametric data-driven algorithm based on 

the ICI rule [2] or its modification called the relative 

intersection of the confidence intervals (RICI) [3]. This 

adaptive algorithm was also applied to the instantaneous 

frequency estimation based on time-frequency 
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distributions [4], [5], as well as to signal and image 

filtering [6], the direction-of-arrival estimation [7], 

determination of time-frequency distributions’ values [8], 

calculation of the Fourier transform [9], beamforming for 

localization of moving sources using a phased array radar 

with antenna switching [10], acoustic echo cancellation 

[11], and various other applications. 

In this paper, we have analyzed parameters selection 

effect on the performance of the adaptive weighted LPA 

estimators, combined with the RICI method, in terms of 

the method’s denoising quality when compared to the one 

obtained using the original ICI base method (known to 

outperform non-adaptive LPA estimators [2], [3]). As 

shown in the paper, the RICI based method performs 

competitively for all tested signals, with its parameters 

used in the paper outperforming the original ICI based 

method.  

The paper is organized as follows. The original LPA-

ICI method is briefly presented in the next section. 

Section III describes the modified LPA-ICI method, 

called the LPA-RICI method. The results are given in 

Section IV, while the Conclusion is presented in Section 

V. 

II. THE LPA-ICI METHOD 

In the paper the noise-free signal estimate ˆ( )x n  was 

extracted from a noisy signal ( ) ( ) ( )y n x n n   

corrupted by the additive white Gaussian noise ( )n  

( N
2(0, ) ), where ( )x n  is the original noise-free signal. 

There are two key requirements demanded by the LPA-

ICI method in order to obtain denoised estimate from the 

noisy signal as close to the noise-free signal as possible, 

while preserving all desirable signal features (such as 

slope changes or jumps) [2]. The first one is to found an 

appropriate adaptive data-driven filter support size 

(calculated by the ICI rule), while the second one is to 

design an appropriate filter (done by the LPA used as the 

filter design tool) [2]. 

The ICI rule, used to calculate the adaptive data-driven 

filter support size h , results in the proper filter size 

minimizing the estimation error: 

 ˆ( , ) ( ) ( )e n h x n x n  , (1) 

where [1], [2]: 
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 2 2 2( , ) ( , ) ( , )E e n h std n h n h                (2) 

( , )n h  and ( , )std n h  are bias and standard deviation of 

the estimate, respectively. As shown in [1], [2], by 

minimizing the mean squared risk ( , )r n h : 

2 * 2min( ( , )) ( , )(1 )r n h std n h                  (3) 

the ICI rule the provides proper filter size 
*h , where:  

              
( , )

( , )

n h

std n h


                                   (4) 

As shown in [2], for the estimation error, the following 

inequality stands true: 

1 /2( , ) ( , ) ( , )e n h n h std n h                   (5) 

where 1 /2   is the ( 1 / 2 )-th quintile of the standard 

Gaussian distribution. 

The ICI rule introduces a sequence of growing filter 

support sizes  1 2 NH h h h      and selects the 

proper filter support size from the set H  for each n  by 

tracking the intersection of confidence intervals 

( , ) ( , ), ( , )i i iD n h L n h U n h   , where [2]: 

ˆ( , ) ( , ) ( , )i i iL n h x n h std n h                  (6) 

is the lower confidence interval limit, and: 

ˆ( , ) ( , ) ( , )i i iU n h x n h std n h                    (7) 

is the upper confidence interval limit,   is the ICI rule 

threshold value, and ˆ( , )ix n h  is calculated using the LPA 

filter the size of which is ih  [12].  

The proper filter support size is than calculated as the 

largest ih  providing the estimation bias to variance trade-

off by satisfying the following condition [1]-[3]: 

( , ) ( , )i iU n h L n h                              (8) 

where ( , )iU n h  is the smallest upper confidence interval 

limit calculated as [2]: 

1, ,
( , ) min ( , )

j i

i j
h h h

U n h U n h
 

                      (9) 

and ( , )iL n h  the largest lower confidence interval limit 

calculated as [2]: 

1, ,
( , ) max ( , )

j i

i j
h h h

L n h L n h
 

                   (10) 

An example of confidence intervals and its intersection 

used for filter support size selection by the ICI based 

method is given in Fig. 1. 

 

 

Figure 1.  An example of the filter support selection using the ICI based method showing the confidence intervals ( , )iD n h  and their intersection.  

The next section presents the modification of the LPA-

ICI method resulting in the improved method’s 

performances.  

III. THE MODIFIED LPA-ICI METHOD  

The LPA-ICI method is known to be highly dependent 

on the parameter   selection [3]. Various method for its 

selection were proposed, often more challenging than the 

denoising problem itself [2]. Imprecise selection of   

can cause undersized filter support size in case of too 

small   value [2]. The problem of undersized filter 

support size can be solved by increasing the   value [3]. 

On the other hand, too large   values result in oversized 

filter support size [2]. The oversized filter support size 

can be solved by the modified ICI rule (RICI rule), 

introducing additional criteria, beside the intersection of 

confidence intervals, defined as [3]: 

( , )i cR n h R                           (11) 

where ( , )iR n h  is the ratio of the confidence interval 

intersection size and the confidence interval size 

calculated as [3]: 

( , ) ( , )
( , )

( , ) ( , )

i i
i

i i

U n h L n h
R n h

U n h L n h





               (12) 

Thus, the RICI rule considers the amount of the 

confidence interval intersection with regards to the 
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confidence interval length, unlike the original ICI based 

method which requires only the existence of the 

intersection of all previous confidence intervals. An 

example of the filter support size selection based on the 

LPA-RICI method is given in Fig. 2. 

 

Figure 2.  An example of the filter support selection using the RICI based method showing the confidence intervals ( , )iD n h  and their intersection 

(top), and relative intersection of confidence intervals ( , )iR n h  (bottom).  

The RICI based method was shown to outperform the 

original ICI based method in terms of denoising quality, 

allowing us to use larger parameter   values, and at the 

same time avoiding the oversized filter support size due 

to newly introduced criteria, as explained in the next 

section.  

The LPA-RICI method’s performance depends on the 

proper   and cR  value selection, as shown in [3]. 

However, the LPA-RICI method’s performance was 

shown to be significantly less sensitive to   and cR  

value selection than the LPA-ICI method is sensitive to 

proper   value selection [13]. Furthermore, cR  was 

shown to belong to the finite interval 0 1cR   (unlike 

the   value belonging to interval 0,  ), making it 

much easer than to find the proper   value for the ICI 

based method. Proper   and cR  values selection for the 

LPA-RICI method was dealt with in [13], proposing the 

formula for ( , )cR  pair.  

The next section presents the performance study of the 

LPA-RICI method with parameters selected using the 

formula given in [13].  

IV. RESULTS 

The LPA-RICI method is applied to the two test 

signals (HeavySine and Cusp signal) and its denoising 

performance is analyzed for various   and cR  values 

and signal lengths. The signals are corrupted by zero-

mean additive white Gaussian noise with the standard 

deviation of the signal to the standard deviation of the 

noise ratio being 7, as in [12]. The estimation efficiency 

is measured by the root mean-square error (RMSE) of the 

denoised signal (averaged over 50M   noise 

realizations for each ( , )cR  pair), calculated as [2]: 

  
2

1 1

1 1
ˆ( ) ( )

M N

j

j n

RMSE x n x n
M N

 

  

where N  is the signal length (128, 256, 512, 1024 and 

2048 signal lengths were analyzed) and j  stands for the 

j -th simulation run. The LPA of order two is used for 

the signal estimation. 

Fig. 3 shows the estimation results for the HeavySine 

signal ( 1024N  ). The noise-free signal is shown in Fig. 

3(a) and the noisy signal is given in Fig. 3(b). The 

denoised signal, using both the LPA-ICI (blue, 4.4   

as in [2]) and the LPA-RICI method (red, with the best 

( , )cR  pair), is shown in Fig. 3(c), while the estimation 

error for both methods is given in Fig. 3(d). The 

estimation error energy, calculated as: 

 
2

1

( , )

N

e i

n

E e n h



 (14) 

is reduced more than four-fold, from 241.74eE   for the 

LPA-ICI method to the 59.84eE   for the LPA-RICI 

method. The adaptive filter support size for each signal 
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sample is shown in Fig. 3(e) for both the LPA-ICI (blue) 

and the LPA-RICI method (red). Fig. 3(f) shows the   
and cR  values in ( , )cR  region for which the RMSE 

does not exceed 10% of its global minimum. 

 
(a)                                                                       (b)                                                                            (c) 

 
(d)                                                                           (e)                                                                  (f) 

Figure 3.  HeavySine signal, 1024N  , 3.28   and 0.80cR   (a) Noise-free. (b) Noisy signal. (c) Estimated signal using the LPA-RICI (red) and 

the LPA-ICI (blue) method. (d) Estimation error for the LPA-RICI (red, 59.84eE  ) and the LPA-ICI method (blue, 254.74eE  ). (e) Filter 

support lengths obtained by RICI (red) and ICI (blue) based method. (f) Region of   and cR  values for which the RMSE is not more than 10% 

larger than the minimum RMSE. 

 

Figure 4.  The RMSE as a function of parameters   and cR  for the HeavySine signal. 

 
(a)                                                                       (b)                                                                            (c) 

 
(d)                                                                           (e)                                                                  (f) 

Figure 5.  Cusp signal, 1024N  , 4.99   and 0.96cR   (a) Noise-free. (b) Noisy signal. (c) Estimated signal using the LPA-RICI (red) and the 

LPA-ICI (blue) method. (d) Estimation error for the LPA-RICI (red, 41.96eE  ) and the LPA-ICI method (blue, 118.12eE  ). (e) Filter support 

lengths obtained by RICI (red) and ICI (blue) based method. (f) Region of   and cR  values for which the RMSE is not more than 10% larger than 

the minimum RMSE. 
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TABLE I.  THE RMSE OF ESTIMATED HEAVYSINE SIGNAL AS A 

FUNCTION OF   AND cR  FOR THE RANGE OF N VALUES (THE 

SELECTED   AND cR  PAIRS ARE THE BEST OBTAINED FOR EACH 

SIGNAL LENGTH N ) 

 LPA-RICI LPA-ICI 

  2.41 3.37 3.65 3.28 4.32 4.4 

cR  0.77 0.90 0.89 0.80 0.89 / 

128N   0.57 0.61 0.61 0.63 0.66 0.81 

256N   0.50 0.47 0.49 0.49 0.52 0.78 

512N   0.40 0.39 0.36 0.38 0.39 0.72 

1024N   0.34 0.30 0.29 0.28 0.29 0.51 

2048N   0.30 0.25 0.23 0.23 0.21 0.37 

TABLE II.  THE RMSE OF ESTIMATED CUSP SIGNAL AS A FUNCTION 

OF   AND cR  FOR THE RANGE OF N VALUES (THE SELECTED   AND 

cR  PAIRS ARE THE BEST ONES OBTAINED FOR EACH SIGNAL LENGTH 

N ) 

 LPA-RICI LPA-ICI 

  4.56 4.95 4.93 4.99 4.87 4.4 

cR  0.95 0.98 0.97 0.96 0.95 / 

128N   0.47 0.50 0.48 0.48 0.38 0.74 

256N   0.39 0.36 0.38 0.39 0.38 0.57 

512N   0.29 0.28 0.28 0.29 0.29 0.47 

1024N   0.22 0.22 0.22 0.21 0.22 0.33 

2048N   0.17 0.17 0.17 0.17 0.17 0.22 

 

The parameters   and cR , including the optimal ones 

for different N , for which the minimum RMSE is 

obtained are given in Table I. The RMSE results for the 

HeavySine signal as the function of the parameter   and 

cR  values is given in Fig. 4. As it can be seen from Fig. 4 

the RMSE decreases as N  grows, while the proper cR  

value is 0.77 0.9cR   and the proper value   is 

2.41 5    (similar to those achieved in [13] for some 

other signals). The method allows us to use larger   

values, and thus the confidence intervals with larger 

confidence level than the LPA-ICI method. 

Denoising results for the Cusp signal are shown in Fig. 

5 ( 1024N  ). The noise-free and noisy signal are given 

in Fig. 5(a) and Fig. 5(b), respectively. Noise-free signals 

estimated both by the LPA-ICI (blue, 4.4   as in [2]) 

and the LPA-RICI method (red, with the best ( , )cR  

pair) are presented in Fig. 5(c). Estimation error is shown 

in Fig. 5(d), with the estimation error energy reduced 

almost three-fold, from 118.12eE   for the LPA-ICI 

method to the 41.96eE   for the LPA-RICI method. The 

adaptive automatically adjusted filter support size for 

each signal sample for both the LPA-ICI (blue) and the 

LPA-RICI method (red) are shown in Fig. 5(e). The 

parameters   and cR  in ( , )cR  region for which the 

RMSE does not exceed 10% of its global minimum are 

given in Fig. 5(f). As it can be seen, the region of proper 

  and cR  values minimizing estimation error is almost 

identical for both signals although the signals are 

significantly different. Furthermore, it is similar to those 

given in [13], proving the method for   and cR  value 

selection given in [13] robust to signal types and signal 

lengths.  

Table II provides the Cusp signal RMSE results for the 

LPA-ICI (with 4.4   as in [2]) and the minimal RMSE 

values obtained by the LPA-RICI method (with best 

( , )cR  pair also given in the table) showing the LPA-

RICI method to outperform original LPA-ICI method for 

all signal lengths. Furthermore, the RMSE is shown to 

decreases as N  grows, with the proper   value is 

4.56 4.99    and cR  value belonging to 

0.95 0.98cR   (close to the results obtained in [13] for 

other signals).  

 

Figure 6.  The RMSE as a function of parameters   and cR  for the 

Cusp signal.  

The RMSE for the Cusp signal as the function of the 

parameter   and cR  values is given in Fig. 6. As it can 

be seen from the figure, the LPA-RICI method allows us 

to use larger   values (meaning confidence intervals 

with larger confidence level) than the LPA-ICI method, 

and at the same time provides estimation error reduction 

due to the additional and stricter criteria in the filter 

support size selection procedure for all tested signals of 

various signal lengths. 

V. CONCLUSION 

The paper has presented the performance analysis of 

the parameters selection procedure for the LPA-RICI 

method applied to two test signals. The LPA-RICI 

method, derived from the original LPA-ICI method, is a 

nonparametric data-driven method providing time-

varying automatically adjusted filter supports combined 

with the weighted LPA based estimators and applied to 

the signal denoising. As shown in this paper, the LPA-

RICI method outperforms the original LPA-ICI method, 

reducing the estimation RMSE by up to two times and 

reducing the estimation error energy by up to four times. 

Due to significant improvement of the LPA-ICI method 

in signal denoising by the LPA-RICI  method, the similar 

enhancements are expected in various technical fields 

where the original ICI based method was shown to 

perform well, such as image and video filtering, time-

frequency analysis, Fourier transform calculation, source 

tracking when sources are moving rapidly within the 

window and motion of other sources is weak, acoustic 

echo cancellation, beamforming for estimating movement 
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parameters in noisy environment using a phased array 

radar with antenna switching, etc.  
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