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Abstract—In this article, some exergetic measures are 

calculated for a JT8D turbofan engine at takeoff.  Selected 

exergetic measures in this study are as follows: fuel 

depletion ration, productivity lack ratio, fuel exergy factor, 

product exergy factor and improvement potential rates. The 

engine has low-pressure compressor (LPC) stages, high 

pressure compressor (HPC) stages, a single HP turbine 

(HPT), and finally three LPT stages.  The exergetic 

assessment of the JT8D turbofan components provided here 

should be helpful for designing turbofan engines. Results 

from this study also evaluate effects of the maximum power 

setting on the exergetic measures of the engine components 

commonly used in medium range commercial aircrafts.  

 

Index Terms—low bypass turbofan, exergy, propulsion, 

commercial aircraft, improvement potential rates 

 

I. INTRODUCTION 

Energy efficiency in commercial aircrafts is improved 

by averaging 1.5% percent annually with the introduction 

of bypass turbofan engines. However, as the bypass ratio 

increased, engine diameter has also increase, leading to 

an increase momentum drag. Other way to propulsion 

system improvement is to increase turbine inlet 

temperature. Between the introduction B707 and B777, 

commercial aircrafts have been constructed exclusively 

of aluminum and are currently about 90% metallic by 

weight. So improvements of structural efficiency are less 

evident [1].  

Worldwide passenger traffic will average 5.1 percent 

growth and cargo traffic will average 5.6 percent growth 

2–5% of the world energy consumption belongs to 

aviation industries [2]-[6]. Total scheduled world revenue 

ton kilometers (RTK) increased by 119 per cent, with 

scheduled passenger revenue passenger kilometers (RPK) 

and cargo (RTK) traffic rising by 108 and 140 per cent, 

respectively [7]. Effects of energy consumption in 

aviation sector give rise to potential environmental 

hazards. Therefore energy consumption plays a crucial 

                                                           
Manuscript received June 3, 2013;  revised September 4, 2013. 

importance role to achieve sustainable development; 

balancing economic and social development with 

environmental protection. The importance of energy 

efficiency is also linked to environmental problems, such 

as global warming and atmospheric pollution [8], [9]. 

The environmental impact of emissions can be reduced 

by increasing the efficiency of resource utilization [10]. 

Using energy with better efficiency reduces pollutant 

emissions. Energy and exergy concepts have been 

utilized in environmental sustainability, economics and 

engineering. Exergy is a quantity which follows from the 

First and Second Laws of Thermodynamics and analyses 

directly impact process design and improvements because 

exergy methods help in understanding and improving 

efficiency, environmental and economic performance as 

well as sustainability. The potential usefulness of exergy 

analysis in addressing sustainability issues and solving 

environmental problems is substantial [11]-[15]. The 

exergy studies related to gas turbines have first been done 

on stationary gas turbines. In the literature, the various 

exergy and exergo-economic analysis of aero engines 

have been reported [16]-[30]. 

Through a literature review, it is noticed that there is 

no work to be studied about exergetic measures for a 

JT8D turbofan engine in the open literatures. The present 

assessment, therefore, aims to provide a practical 

framework for the use of such exergy analysis in low 

bypass engines. Lack of exergy analysis for low bypass 

turbofan engine makes the paper original and becomes 

main motivation.  

In this paper, the detailed exergetic parameters of 

JT8D low bypass turbofan engine have been performed. 

In this analysis, fuel depletion ration, productivity lack 

ratio, fuel exergy factor, product exergy factor and 

improvement potential rates have been calculated at 

maximum power setting, i.e. takeoff condition. These 

exergetic parameters of JT8D have first been studied in 

this paper.  

II. SYSTEM DESCRIPTION JT8D TURBOFAN ENGINE 
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JT8D series engines are one of the most popular 

modern commercial engines ever made. More than 

14,750 of them have been built, amassing more than 673 

million hours of reliable service since 1964. The eight 

models that make up the JT8D family cover a thrust 

range from 62 to 76 kN. The newer JT8D-200 engine 

offers 18,500 to 21,700 pounds of thrust, and is the 

exclusive power for the popular MD-80 aircraft [31]. 

 

Figure 1. Main components of JT8D engine 

An illustrated diagram, station numbering and main 

component of the high bypass turbofan engine is shown 

in Fig. 1. It consist of fan (F), axial low pressure 

compressor (LPC), axial high pressure compressor (HPC), 

an annular combustion chamber, high-pressure turbine 

(HPT)  and low pressure turbine (LPT). 

This engine operates according to the Brayton cycle, 

which includes four processes under the ideal conditions 

given below: 

a. isentropic compression (fan and HPC) 

b. combustion at constant pressure (CC) 

c. isentropic expansion (HPT and LPT)  

d. heat transfer at constant pressure (EN and FN). 

There are two drive shafts in this engine. The first, N2, 

connects the HPT and HPC and constitutes the HP system, 

while the second, N1, connects the LPT to the fan and 

constitutes the LP system. While the high pressure 

turbine runs the high pressure compressor, fuel pump, 

starter generator and reduction gearbox, LPT runs the fan. 

III. EQUATIONS FOR THERMODYNAMIC ANALYSIS 

Thermodynamic first-law analysis is energy-based 

approach in thermal systems. It is based on the principle 

of conservation of energy applied to the system. For a 

general steady state, steady-flow process, the four balance 

equations (mass, energy, entropy and exergy) are applied 

to find the work and heat interactions, the rate of exergy 

decrease, the rate of irreversibility, the energy and exergy 

efficiencies [32]-[34]. 

First Law or ‘energy’ analysis takes no account of the 

energy source in terms of its thermodynamic quality. It 

enables energy or heat losses to be estimated, but yields 

only limited information about the optimal conversion of 

energy. 

In contrast, the Second Law of Thermodynamics 

indicates that, whereas work input into a system can be 

fully converted to heat and internal energy, not all the 

heat input can be converted into useful work [37]. The 

exergy loss in a system or component is determined by 

multiplying the absolute temperature of the surroundings 

by the entropy increase [37]-[39]. Exergy methods also 

help in understanding and improving efficiency, 

environmental and economic performance as well as 

sustainability [40]. 

Note that, whereas energy is a conserved quantity, 

exergy is not and is always destroyed when entropy is 

produced. In the absence of electricity, magnetism, 

surface tension and nuclear reaction, the total exergy of a 

system Ex can be divided into four components, namely 

(i) physical exergy PHEx  (ii) kinetic exergy KNEx  (iii) 

potential exergy PTEx and (iv) chemical exergy CHEx  

[37]. 

Numerous ways of formulating exergy (or second-law) 

efficiency for various energy systems are given in detail 

elsewhere [41]. It is very useful to define efficiencies based 

on exergy. There is no standard set of definitions in the 

literature. Here, exergy efficiency is defined as the ratio of 

total exergy output to total exergy input, i.e.  

1out dest
ex

in in

Ex Ex

Ex Ex
                              (1) 

This improvement potential in the rate form, denoted IP , 

is given by 
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                          1 ex in outIP Ex Ex                               (2) 

Fuel depletion ratio ( k ) expresses the exergy 

destruction for a system unit as a percentage of the total 

fuel exergy, and can be written as [42] 

                                  ,dest k

k

tot

Ex

F
                                       (3) 

Productivity lack, which is similar to the fuel depletion 

ratio, gives the product loss in the form of exergy 

destruction or shows how much product exergy potential 

is lost due to exergy destructions. Productivity lack ξ is 

expressible as [42]; 

                                   ,dest k

k

tot

Ex

P
                                      (4) 

Fuel and product exergy factors measure the parts of 

the fuel and product exergy values for a component as a 

fraction of the total fuel and product exergy values for the 

engine, respectively. These factors provide useful 

information about the consumed and produced exergy 

quantities inside the system, on a component by 

component basis. The fuel exergy factor f can be written 

as [42]; 

                                         k
k

tot

F
f

F
                                     (5) 

and the product exergy factor p as [42]; 

                                          k
k

tot

P
p

P
                                    (6) 

IV. ANALYSIS 

The total airflow mass is 142.7 kg/s that includes 74.74 

kg/s fan air and 67.95 kg/s core air. Air is taken into LPC 

at ambient temperature of 288.15 K and ambient pressure 

of 101.35 kPa. In gas turbine engines, a part of 

compressed air is extracted to use for ancillary purposes, 

such as cooling, sealing and thrust balancing. In this 

study the cooling airflow is neglected since it doesn’t 

have meaningful effect on exergy and sustainability 

analyses. 

In this study, the assumptions made are listed below  

(a) The air and combustion gas flows in the engine are 

assumed to behave ideally. 

(b) The combustion reaction is complete  

(c) Compressors and turbines are assumed to be 

adiabatic 

(d) Ambient temperature and pressure values are 

288.15 K and 101.35 kPa, respectively. 

(e) The exergy analyses are performed for the lower 

heating value (LHV) of kerosene (JET A1) which is 

accepted as 42,800kJ/kg. 

(h) Engine accessories, pumps (fuel, oil and hydraulic) 

are not included in the analysis 

(i) The kinetic and potential exergies are neglected 

(j) Chemical exergy is neglected other than combustor. 

As fuel the kerosene (JET A) is burned. Its chemical 

formula is as C12H23.  The value of LHV is 42,800 kJ/kg. 

Fuel flow is 1.05 kg/s that results in air/fuel ratio as 64.  

The exergy analysis of JT8D gas turbine engine’s Fan, 

HPC, combustor, HPT and LPT will be performed.  

V. RESULTS AND CONCLUSIONS 

In this paper, some exergetic parameters of JT8D 

turbofan engine at takeoff thrust power have been carried 

out. In this analysis, these parameters are fuel depletion 

ration, productivity lack ratio, fuel exergy factor, product 

exergy factor and improvement potential rates. Now, it is 

necessary to definite the phases of flight for an aircraft. 

Considering the flight phases as a function of engine 

power, the flight phases can be split into seven parts in 

this study: a) landing b) climb c) maximum cruise d) 

normal take-off e) maximum continuous f) automatic 

power reverse g) maximum take-off.  

Fig. 2 demonstrates the fuel depletion of the fan, HPC, 

combustor, HPT, LPT and JT8D turbofan engine at 

takeoff condition. 

 

Figure 2. Fuel depletion rate of JT8D engine components. 

Fig. 3 also illustrates the productivity lack ratio of the 

fan, HPC, combustor, HPT, LPT and JT8D turbofan 

engine at takeoff condition. 

 

Figure 3. Productivity lack ratio of JT8D engine components. 

Fuel exergy factor of the fan, HPC, combustor, HPT, 

LPT and JT8D turbofan engine at takeoff condition is 

given in Fig. 4. 

Fig. 5 also shows the productivity exergy factor of the 

fan, HPC, combustor, HPT, LPT and JT8D turbofan 

engine at takeoff condition. 

Finally, Fig. 6 also illustrates the improvement 

potential rates of the fan, HPC, combustor, HPT, LPT and 

JT8D turbofan engine at takeoff condition. 
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Figure 4. Fuel exergy factor of JT8D engine components. 

 

Figure 5. Product exergy factor of JT8D engine components. 

 

Figure 6. Improvement potential rates of JT8D engine components. 

The exergetic parameters studied in this paper, 

important indicators for the sustainability of the engine, is 

mainly based on the exergy input and the required output. 

It is noticed that the exergy efficiency of the turbofan 

engine highly affected by the input-output exergetic 

values of the each engine component at all phases of a 

flight. The results in Fig. 2 show that the fuel depletion 

ratio values ranges from 0.2% to 12.6% in engine 

components. As can be seen in Fig. 2, HPT and LPT are 

good fuel depletion ratios changes between 0.2-0.4 due to 

higher isentropic efficiencies. For the fan and HPC, fuel 

depletion ratios are found to be 1.7% and 2%, 

respectively. On the other hand, maximum fuel depletion 

ratio is observed in combustor (to be 12.6%) due to 

internal irreversibilites in CC.  

The unit with productivity lack ratio is found to be CC 

(to be 15.3%) as shown in Fig. 3. The productivity lack 

ratio for the other units are found to be HPC (to be 

2.45%), fan (to be 2.01%), LPT (to be 0.53%) and HPT 

(to be 0.29).  

Greatest fuel exergy factor is calculated in the CC (to 

be 49.5%) as shown in Fig. 4. It is clear from Fig. 4 that 

fan fuel exergy factor with value of 11.6%. For the 

product exergy factor, CC has maximum value (to be 

44.4%) as shown in Fig. 5.  

Finally, in the last figure, minimum improvement 

potential rate is found in HPT with the value of 0.01 MW. 

For the other low improvement potential rates are 

calculated to be 0.02 MW for the LPT, 0.36 MW for the 

fan and 0.47 MW for the HPC as shown in Fig. 6. On the 

other hand, improvement potential rate is observed in 

combustor (to be 4.82 MW) due to irreversibilites in CC.    

The results should provide a realistic and meaningful 

in the thermodynamics second law evaluation of JT8D 

low bypass turbofan engine, which may be useful in the 

analysis of similar propulsion systems. In a future study, 

we will focus on exergo-environmental and exergo-

sustainability analysis of the low bypass turbofan engine. 

It is noted that, to obtain more comprehensive 

conclusions, exergo-economics must be considered. In 

particular, an exergo-economic analysis would be useful. 

An exergo-environmental analysis can help improve the 

environmental performance of the low bypass engine, and 

consequently should be considered in future assessments. 
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