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Abstract—Steady-state temperature distribution of three 

model houses, each with a roof of different shape, are 

presented in this paper. The governing equation used was a 

heat conduction equation in two dimensions. The 

assumption made was that the houses were of closed space 

with no convection nor radiation. The distributions were 

determined by using a finite difference method (FDM) and a 

finite element method (FEM). They showed that different 

roof geometries yielded different temperature distributions. 

In particular, the roof with a convex shape let in less heat 

than the one with a standard (triangular) shape and the one 

with a concave shape in that order.  

 

Index Terms—heat transfer, finite element method 

 

I. INTRODUCTION 

Currently, the average ambient temperature in 

Thailand is steadily increasing due to global warming. 

Most buildings are equipped with an air conditioning 

system that consumes a large amount of energy. There 

are many different ways to help reduce this excessive 

consumption. For example, a good landscape design 

inside and outside of a building can make it cooler to live 

in. In addition, uses of reflective paint and proper 

insulation can cool it down further. A suitably shaped 

roof is also another way to prevent heat from getting into 

the interior of a building. 

Many researchers have attempted to improve heat 

transfer characteristics of buildings either by doing 

simulation or actual experiment. In 2005, V. Cheng et.al 

[1] described the effects that color and thermal mass of a 

building had on its indoor temperature. In the same vein, 

Y. Ungkoon and B. Israngkura Na Ayudhya [2]-[3], built 

two model houses to investigate the impact of two kinds 

of concrete walls. Recently, S. Siriteerakul et.al [4]-[6] 

simulated heat diffusion through three types of roof tiles, 

heat conduction within a building with three different 

glass wall arrangement patterns, and heat transfer in 

buildings with different geometrical structures.   

This study investigated the effect of several different 

shapes of roof on heat transfer in a rectangular building. 

The investigation was done by simulation using a finite 

difference method under Crank-Nicolson scheme and a 

finite element method under Galerkin principle in two 
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dimensional rectangular coordinate system. The 

assumption made was that the building was a closed 

space with no convection nor radiation. The different 

steady-state temperature distribution at the centerline of 

each of the three model buildings, from the top of the 

roof to the floor, was computed and then all three of them 

were compared. 

II. GOVERNING EQUATION 

In this paper, the heat transfer in each of our three 

model houses with differently shaped roof was solved by 

using a heat conduction equation under the assumption of 

no convection and radiation. 

The governing equation of heat conduction in two 

dimensional rectangular coordinate systems can be 

expressed as: 
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where T  is the temperature and
2c is the thermal 

diffusivity. At steady state, the equation becomes Laplace 

equation. 

III. METHODOLOGY 

To determine the solution, a finite difference method 

and a finite element method were used as follows: 

A. Finite Difference Method 

Finite difference method is a classical numerical 

method for solving differential equation with simple 

domain. This method (Runge [7]) was first used in 1908. 

Since then, many researchers have applied it to problems 

in elastics and fluid dynamics such as Richardson [8], 

Young and Wheeler [9], Richtmyer and Morton [10], 

Roache [11], and Crochet et al. [12].  

 
Figure 1. Generating grid points 

Journal of Automation and Control Engineering Vol. 2, No. 1, March 2014

71
doi: 10.12720/joace.2.1.71-74
©2014 Engineering and Technology Publishing



For a given problem, one starts by overlaying the 

domain with a uniform grid and assigning nodal points as 

shown in Fig. 1. Then, determine the finite difference that 

approximates the derivative of each of the nodal points. 

There are three approximation schemes: explicit scheme 

(forward difference), implicit scheme (backward 

difference), and Crank-Nicolson scheme (central 

difference). For our heat diffusion equation, the 

numerical solution was based on Crank-Nicolson scheme. 

From our governing equation, the Laplace equation, 

we estimated the derivatives by using Taylor series 

expansion as follows: 
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After substitution and rearrangement, the equation for  

h k=  becomes  
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From equation (4), after substituting the actual value of 

every known term from the boundary condition, we 

obtained a new equation for each of the unknown points. 

These were simultaneous equations, a linear system of 

equations. This linear system of equation (Ax=b) can be 

solved either by a direct technique or an iterative 

technique. Direct techniques are such as Gauss 

Elimination, LU Factorization, or Cholesky 

decomposition LDL
t
. Iterative techniques are such as 

Jacobi iterative method, Gauss-Seidel iterative technique, 

and Successive Over-Relaxation technique. 

B. Finite Element Method 

Finite element method is a numerical method to solve 

boundary value problems which the domains are various 

shapes. This method has been used first in 1965 by 

Zienkiewicz and Cheung [13]. Then, many researcher 

developed and applied this method to flow problems for 

example Oden and Wellford (1972) [14], Chung (1978) 

[15], Baker (1983) [16-18]. In recently, the finite element 

method has been solved the solution of complex 

problems in different field of engineering and science: 

heat conduction, vibration and continuum fluid dynamics. 

Some group attempted create software program to 

solve the problems. For example, P. Dechaumpai and 

S.Phongthanapanich created Easy FEM software [19], 

which used the finite element method. This software was 

created under Galerkin principle. 

In this study, we employed this software with the 

unstructured meshes. Therefore, each element was 

considered in linear triangular mesh and transform in 

and  coordinates as shown in Fig. 2. 

 
Figure 2. linear triangular mesh  

Their linear shape functions are following  
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And their derivative of  and as follows: 
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IV. PROBLEM SPECIFICATIONS 

The three domains of this problem are shown in Fig. 3. 

The high of all model houses are similar.  

 
Figure 3. Domains of this problem 
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For computation by using finite difference method, the 

grid points of each domain were generated in order to 

solve thermal value at the points as shown in Fig. 4. 

 
Figure 4. Grid points for finite difference method  

For solutions obtained by finite element method, we 

employed Easy FEM software to solve the solutions. 

Domains were separated to partial elements by 

unstructured mesh as in Fig. 5.  

 
(a) Standard                  (b) Concave                (c) Conves 

Figure 5. Domains of this problem  

To compute the steady state temperature distribution of 

the three model houses, proper initial and boundary 

conditions needed to be assigned. The boundary 

conditions were that the temperature at (the bottom of) 

the roof was 30 C and the temperature at (the inside of) 

the wall was 25 C and the temperature at the (top of the) 

ground was 25 C.  

V. RESULT 

The temperatures at centerline from top to the ground 

which received from finite difference method are 

presented in Fig. 6. 

 

Figure 6. Temperature at centerline of each roof geometry by Finite 
Difference Method  

From Fig. 6, we found that the temperature decreased 

steadily from the top of the roof to the ground. 

In the other hands, by using finite element method, the 

steady state temperature distributions of the three model 

houses with three different roof geometries are illustrated 

in color contours in Fig. 7. 

 
(a)  Standard Shape 

 
(b) Concave Shape 

 
(c) Convex Shape 

Figure 7. Color contours of temperature distributions  

The temperature (T) decreased steadily from the top of 

the roof to the ground. The heat transfer patterns of the 

three different roof geometries followed the same trend 

but were not identical. We found that heat was  
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transferred more easily through the concave roof than  

through the standard roof and the convex roof in that 

order. A comparison between the temperature (at points 

on the centerline) of each roof geometry is shown in Fig 8.   

 
Figure 8. Temperature at centerline of each roof geometry by Finite 

Element Method  

Both the finite difference method and finite element 

method methods give the solutions in the same trend. The 

error between two processes was evaluated by standard 

deviation. Standard deviation of standard pattern is 

1.795355, concave pattern is 1.867539 and convex 

pattern 1.775234. 

VI. CONCLUSION 

Simulations of heat distribution in three model houses 

with different roof geometries were done. It was found 

that, at steady state, a convex roof let in less heat than a 

standard (triangular) roof and a concave roof in that order. 

Hence, it is clear that a proper roof design can minimize 

the impact of heat entering into a building. 
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