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Abstract—This paper reviews the model of the induction 

motor in stationary reference frame, with stator current and 

rotor flux components as state variables. The state feedback 

linearizing and decoupling control as applied to the 

induction motor drive is presented. With this control, the 

drive system is decoupled into two linear subsystems: 

electrical and mechanical. Comprehensive and systematic 

procedures are developed to determine the gains of the 

Proportional–Integral (P-I) controllers for electrical and 

mechanical subsystems. The controlled drive system is 

simulated in MATLAB SIMULINK and experimented in 

RTDS environment, and results are presented.  

 

Index Terms—feedback linearization; flux estimator; 

stationary reference frame; proportional-integral controller; 

real time digital simulator (RTDS) 

 

I. INTRODUCTION  

Recently the subject of nonlinear control is occupying 

an increasingly important place in automatic control 

engineering and has become a necessary part of the 

fundamental background to control engineering [1]-[2]. 

Its potential application in the area of induction motor 

control is emerging as the thrust area for research work. 

The induction motors are the most preferred for industrial 

application because of simplicity, reliability, low cost, 

ruggedness, and suitability to work in volatile 

environment. It does not require maintenance and is 

pollution free. So, it is also well acceptable in automation 

industries. But it requires complex control strategy, 

because it possesses three inherent drawbacks as follows. 

It is a higher order nonlinear dynamic system with 

internal coupling of states. Some state variables like rotor 

currents and flux are not directly measurable. Variations 

in parameters like rotor resistance due to temperature, and 

magnetizing inductance due to saturation have significant 

impact on the system dynamics. 

Many attempts have been made in past to optimize the 

performance and simplify the control strategy of the 

induction motor.  

Out of these Field Oriented Control or Vector Control 

proposed by Blaschke [3], and Hasse [4] has emerged 

successfully to achieve the high performance requirement. 

As a result it has been aggressively accepted by the 

automation industries by replacing bulky, costly DC 

motor drive which has commutation problem. 
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The vector control methods are complex to implement. 

Because in vector control method, the decoupling 

relationship is obtained by means of a proper selection of 

state coordinates, under the hypothesis that the rotor flux 

is kept constant. The torque is only asymptotically 

decoupled from the flux i.e., decoupling is obtained only 

in steady state, when the flux amplitude is constant. 

Coupling is still present, when flux is weakened in order 

to operate the motor at higher speed within the input 

voltage saturation limit or when flux is adjusted in order 

to maximize power efficiency [5], [6]. 

This has further led to introduction nonlinear 

geometric control theory particularly feedback 

linearization, which can achieve completely decoupled 

torque and flux amplitude of the induction motor [7]-[18]. 

But for the satisfactory performance, the motor 

parameters of the controlled plant must be precisely 

known and accurate knowledge of the flux is required. In 

the last decade, a good number of research works has 

been reported incorporating various control schemes to 

simplify and to enhance the performance. The work 

includes several methods for accurate estimation of flux. 

But the control performance is still influenced by the 

uncertainties of the plant. Therefore, the motivation 

behind this work is to design a suitable robust control 

scheme to combat the uncertainties arising in practical 

application.          

In this work, decoupling of flux and speed in induction 

motor drive with state feedback linearization technique, 

and design of the proportional-cum-integral (P-I) 

controllers for flux and speed control loop are presented. 

The nonlinear dynamics of the induction motor in the 

stationary reference frame is presented in section II. The 

nonlinear model of induction motor is linearized by state 

feedback linearization and decoupling technique in 

section III. The induction motor is thus decoupled into 

two linear subsystems: electrical subsystem and 

mechanical subsystem. In section IV, systematic 

procedures are used to select the gains of the P-I 

controllers for each subsystem. In section V, closed loop 

control technique based on state feedback linearization 

algorithm is simulated using P-I controllers and results 

are discussed. The control scheme is simulated in 

MATLAB SIMULINK environment and verified in 

RTDS environment. 
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II. MODELING OF INDUCTION MOTOR 

The dynamic equations representing induction motor in 

the stator fixed α-β reference frame are as: 
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where, 2
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L

L L
  

 is the leakage coefficient;   

(iαs, iβs), (ψαr, ψβr), (Vαs ,Vβs) are respectively the α-β 

component of the stator current, rotor flux and stator 

voltage, (Rs, Ls), (Rr, Lr) are stator and rotor parameters 

(resistance and inductance), Lm is magnetizing inductance 

and ωr is the motor speed.  

The electromagnetic torque developed is given by 
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p is the number of pole pairs. 

III. FEEDBACK LINEARIZATION 

Feedback linearization is an approach to nonlinear 

control design which has attracted great deal of research 

interest in recent years. The central idea of the approach 

is to algebraically transform a nonlinear system dynamics 

into a fully or partially linear one so that linear control 

technique can be applied. This differs entirely from 

conventional linearization techniques. Feedback 

linearization is achieved by exact state transformation. 

Therefore, it uses a nonlinear transformation on system 

variables expressing them in a new suitable coordinate 

system which enables the introduction of a feedback, so 

that an input-output or state linearization in new 

coordinates is achieved. The theoretical foundation and 

systematic approach can be found in [1], [7]-[18]. 

In order to control the induction motor in field 

orientation schemes to get a dc motor like performance, 

the rotor speed and rotor flux must be decoupled. 

Therefore, outputs to be controlled are chosen as the rotor 

speed, ωr and rotor flux, ψr. The magnitude of rotor flux 

is given as 
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The time derivative of rotor flux linkage is 
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Substituting
 r r  from (3) and (4) into (8) 

1 m r m rr r

r r r r r s r r r r s

r r r r r

L R L RR R
p i p i

L L L L
             



    
           

    


  

(9) 

Simplifying (9), the rotor flux dynamic equation is 
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From (5) and (6), rotor speed dynamic equation is 
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Equations (10) and (11) describe flux and mechanical 

system, which has iαs, and iβs as two control inputs. Thus, it 

represents a coupled system. Therefore, the nonlinear 

feedback theory [1] is used to eliminate this coupling 

relationship between the control inputs iαs, iβs and the 

system outputs ψr and ωr. Let 1u and 2u  be taken as two 

new control input which converts coupled system into 

decoupled one [7]. Equations (10) and (11) with new 

control input can be rewritten as: 
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From (10), (11), (12) and (13) the expression for 

control inputs can be written as [7]. 

                     

 
1

1 r s s s

r

u i i    


                   (14) 

                       

 2 r s r su i i                            (15) 

Above equations are rewritten in (16) and (17) for 

derivation of 
si and si in terms of 1u and 2u  
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Equations (16) and (17) represent a feedback 

linearization decoupling controller. The block diagram of 

feedback linearizing controller is shown in Fig.1. The 

transformed model of induction motor as given in (12) 

and (13) is linear and decoupled. The developed torque 

and the rotor flux are independently controlled. The 

induction motor model is now decoupled into two linear 

subsystems: Electrical subsystem and Mechanical 

subsystem, shown in Fig.2 and Fig. 3, respectively. The 

electrical subsystem is given by (12) and mechanical 

subsystem is given by (13). The rotor flux and motor 

speed can be controlled by P-I controllers [8]. P-I 

Controllers are developed using linear control theory in 

[8], to obtained desired steady state and transient 

performance. The performance of the drive system 
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largely depends upon the choice of the controller. Design 

of controllers is discussed in section IV. 

 

Figure 1.  Feedback linearizing and decoupling controller 

 

Figure 2.  Block diagram of the open loop electrical subsystem 

 

Figure 3.  Block diagram of the open loop mechanical subsystem 

IV. DESIGN OF P-I CONTROLLERS 

The electrical and mechanical subsystems obtained 

above are type zero systems as the integral term is absent 

in both. So, a step input leads to a steady state error. 

Hence, controllers with integrating action are required for 

both the subsystems. In this scheme two Proportional-

cum-Integral (P-I) controllers are used, one for the 

electrical subsystem and another for the mechanical 

subsystem. To have a feel of the influence of controller 

gains on the characteristic of the drive system in general 

and the factors affecting the gains of the P-I controllers in 

particular, the transfer function of the electrical and 

mechanical subsystem are analyzed. Drive system with 

designed controllers is simulated and it is verified that 

simulation response with the designed controllers is 

satisfactory. P-I controllers are designed using Modulus 

optimum method. The controller is designed so as to 

make the modulus of the closed loop transfer function, 

unity over a wide frequency range, starting from zero. 

A. P-I Controller for Electrical Subsystem 

Using the induction motor parameters given in Section 

V, Lr=0.52H, Lm=0.5H and Rr=0.64Ω, the open loop 

transfer function for the electrical subsystem shown in 

Fig.2 can be expressed as  
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This is a first order transfer function. Time constant of 

flux is: 

1
0.092sec.
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The time constant of the open system response is 0.092 

s. For a unit step input, 90% rise time of flux is 2.3 times 

the electrical time constant, i.e., 2.3x 0.092= 0.216 s, 

thereby giving sluggish response. In order to track the 

reference flux 
*

rψ
 
 and to improve the system response 

one P-I controller is used as shown in Fig. 4. The transfer 

function G0(s) of the forward path including that of the 

controller is 
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The characteristic polynomial of the closed loop 

transfer function:
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of second order and compared with the standard form: 
2 2( 2 )n ns s   , where, ωn is the natural frequency 

of oscillation and  ξ is the damping factor. Assuming the 
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In order to make the system critically damped (i.e.,=1), 

equating coefficients of s, proportional gain Kp1 is 

obtained. 

10.846 + 5.42Kp1 = 2n = 150 
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Figure 4.  Block diagram of the closed loop electrical subsystem with 

P-I controller 

With these values of Kp1 and Ki1, the control law for the 

electrical subsystem is: 

* *

0

1 25.67( ) 1037.8 ( )

t

r r r r
u dt      

 
Thus closed loop poles are at -75, farther away from the 

origin of complex s-plane, than the open loop pole at -

10.846. Rise time for unit step speed input 
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is 1
   2.3 0.03

75
 

 s.  This makes the closed loop 

system’s dynamic response faster and more stable.  The 

drive system is simulated taking different value of n and 

it is observed from the simulation studies that n = 75 

rad/s is more acceptable. 

B. P-I Controller for Mechanical Subsystem 

Using the induction motor parameters given in Section 

V, Lr=0.52H, Lm=0.5H and Rr=0.64Ω, J=0.16 kg.m2 and 

B=0.035 kg.m2/s,  the open loop speed transfer function is: 
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Figure 5.  Block diagram of the closed loop mechanical subsystem with 

a P-I controller 

This is a fist order transfer function. Time constant of 

speed is 
1

4.55sec
0.22r

   It’s rise time is 

2.3 4.55 10.465  s and pole at -0.22 gives sluggish 

response. In order to track the reference speed 
*

r
 
 and to 

improve the transient performance a P-I controller is used 

as shown in Fig. 5. 

The transfer function of the forward path including that 

of the controller is 
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speed control loop can be expressed as: 
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The closed loop transfer function is of second order. 

The characteristic polynomial is in the 

form
2 22 n ns s   . Assuming  ωn to be 4 rad/s, and 

comparing the terms: 
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Assuming the system to critically damped (i.e., =1) 
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With these gain values the speed control law is given 

by: 
* *

2 0.432( ) 0.88 ( )
r r r r
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The closed loop pole is at -4, farther to the left of the 

origin of complex s-plane than the open loop pole -0.22. 

Rise time for unit step speed input is 

1
2.3 0.306

7.5
   s. The dynamic response is faster 

and more stable. Therefore, above gains are acceptable. 

The drive system is simulated by taking different value of 

n and it is observed from the simulation studies that n = 

4 rad/s is a good choice. 

C. System Description 

The schematic block diagram of the proposed system is 

shown in Fig. 6. The scheme consists of two P-I 

controllers with feedback linearizing algorithm, one flux 

estimator, and one current controlled PWM voltage source 

inverter. Two P-I controllers are regulating flux and speed 

loop. Voltage model [6] is used for flux estimation. 

Output of flux and speed regulator and also estimated flux 

are the inputs to the decoupling controller and its output 

goes to the current controller. Output of the current 

controller is utilized to generate gate drive signal for 

PWM voltage source inverter (VSI), which forces 

reference current in the motor to develop required torque.  

 

Figure 6.  Schematic diagram of a linearized induction motor with P-I speed and flux controller 
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V. SIMULATION RESULTS AND DISCUSSIONS 

The proposed control scheme is simulated in 

SIMULINK and experimented with the real-time digital 

simulator (RTDS). The specifications and parameters of 

the induction motor are as follows. Three Phase Squirrel 

Cage Induction Motor –:5 HP (3.7 kW), 4 pole, ∆-

connected, 415 V, 1445rpm, Rs = 7.34Ω, Lls =0.021H, Lm 

=0.5H, Rr = 5.64Ω, Llr = 0.021H, J=0.16 kg-m2, B=0.035 

kg-m2/s. 

Simulation results corresponding to speed response, 

electromagnetic torque response, stator current and rotor 

flux are presented in Fig. 7 for SIMULINK simulation and 

in Fig. 8 for RTDS. Rotor speed, developed 

electromagnetic torque, stator phase-a current, α-β 

components of rotor flux are shown under different 

dynamic conditions such as starting acceleration and load 

perturbation (load application and load removal). From 

the obtained result the following salient features are 

observed. 

Starting Dynamics: The three phase squirrel cage 

induction motor is fed from a controlled voltage and 

frequency source. The reference speed is set at 500 rpm 

with a current limit set at the rated value. Therefore, the 

starting current is limited to the rated current when the 

motor builds up the required starting torque to reach the 

set speed. The motor reaches its set speed in 0.43s. The 

theoretical value is obtained in section IV as 0.306s. 

When the speed error becomes zero rpm the winding 

current also reduces to no load value and the developed 

torque becomes equal to no load torque as observed in the 

stator current response shown in Fig. 7. The rotor flux 

amplitude remains constant throughout.  

Load Perturbation: As shown in Fig. 7, when the motor 

is running at a steady state speed of 500 rpm, a load 

torque equal to the 10 N.m is applied at t = 1s and 

removed at t = 1.5s. Application of the load results in 

increase of stator current to corresponding value. 

VI. CONCLUSIONS 

The feedback linearization control for induction motor 

drive has been presented to decouple speed and flux. 

Systematic procedure is adopted to design P-I controllers 

for electrical and mechanical subsystems. The complete 

scheme is simulated in MATLAB SIMULINK 

environment. The performance of the system is observed 

in terms of speed response, torque response, motor 

current and flux. The results obtained establish that 

decoupling of flux and speed is obtained at all stages 

through the proposed control algorithm. The scheme is 

implemented in RTDS. There is reduction in the torque 

ripples and better rotor flux response. 

 

(a) Speed response 

 

(b) Electromagnetic torque response 

 

(c) Stator current response 

 
(d) Alpha-Beta components of rotor flux linkage 

Figure 7.  Simulation results of drive system with P-I controllers 

 

(a) Speed response 

 

(b) Electromagnetic torque response 
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(c) Stator current response 

 

(d) Alpha-Beta components of rotor flux linkage 

Figure 8.  Real time simulation results of the system with RTDS 
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