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Abstract—This paper presents a comprehensive ANN based 

multisensor fusion approach designed to support the 

implementation of an adaptive error compensation of 

geometric, thermal and dynamic errors for enhancing the 

accuracy of CNC machine tools. Accurate and efficient 

model to perform on-line error prediction is an essential 

part of the compensation process. The proposed approach 

consists of the following major steps: (i) design of an 

integrated spatial-variant model describing the machine 

topology, (ii) measurement of path-dependent rigid-body 

errors according to the model, (iii) design of time-variant 

models for error components through sensors fusion, (iv) 

continuous monitoring of the machine conditions using 

position, force, speed and temperature sensors for one-line 

error components prediction and integration to produce a 

correction vector, (v) total positioning error synthesis and 

software compensation. Implemented on a turning center, 

the proposed approach led to a consistent model able to 

accurately and reliably provide an appropriate error 

identification and compensation under variable machine 

tool conditions. 

 

 

Index Terms—machining, machine tools, machine tool 

accuracy, error compensation, sensor fusion, neural 

network 

 

I. INTRODUCTION 

The quest for higher precision has stimulated the 

development of highly accurate CNC machine tools (MT). 

Unfortunately, the machining task is usually performed in 

the presence of disturbances, which can induce 

systematic and random errors that tend to adversely affect 

the MT accuracy. Indeed, the MT accuracy is affected by 

various errors related to geometric imperfections, thermal 

deformations, load effects and dynamic disturbances. 

These errors are generally classified according to their 

source and behaviour in the time domain [1]. In typical 

MT, quasistatic errors are responsible for a very large 

proportion of the observed machine inaccuracy. 

Considered as slowly varying in time, quasi-static errors 

associated to the MT structure are due to imperfect 

geometry, defective kinematics of moving components, 

static deflections and thermal distortions [1], [2]. On the 

other hand, dynamic errors are related to tool wear, tool 

chatter, spindle run-out, machine self-induced and forced 

vibrations, and other disturbances associated to the 
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machining process. Considering all these error sources, 

helps to easily outline the diversity and variability of their 

effects and assess the difficulties involved in improving 

the MT accuracy. 

The traditional procedure for providing relatively 

error-free MT involves improving the design and 

manufacturing of the machine structural components. 

However, additional design refinements lead, in general, 

to excessive costs. An alternative approach using 

software technologies to compensate for dimensional 

errors has proven to be economical and more effective in 

upgrading the machine accuracy [3], [4]. Various efforts 

related to MT metrology focusing on error measurement, 

analysis, modeling, prediction and compensation have 

been proposed over the last three decades [1]-[5]. Early 

research has concentrated on applying methods based on 

analytic, trigonometric, vectorial, matrix representation 

and empirical models to describe the final observed 

volumetric error in MT workspace [6-9]. More recent 

attempts propose artificial intelligence based approaches 

for errors compensation [10], [11]. 

To perform active error compensation, individual error 

components have to be evaluated on-line. Since there is 

no reliable method for direct error measurements, only 

on-line error prediction using indirect methods offers 

potential for the compensation of both quasistatic and 

dynamic effects. The approach proposed in this paper is 

designed to support the implementation of an adaptive 

error compensation for MT accuracy improvement by 

compensating for geometric, thermal, load-induced, and 

inertial errors. The proposed compensation scheme is 

based on continuous monitoring of the MT conditions 

using position, forces, speed and temperature sensors for 

error components prediction and integration. Built on a 

Mori Seiki SL25SE turning center, the essential feature of 

compensation scheme consists of one-line individual 

error components prediction through an improved ANN 

based multi-sensor fusion strategy and errors integration 

through time and spatial variant error models for total 

positioning error synthesis and compensation. 

II. THE PROPOSED IDENTIFICATION AND 

COMPENSATION APPROCH 

The accuracy of machine tools is adversely affected by 

various error sources such as geometric imperfections, 

thermal deformations, load effects, and dynamic 

disturbances. Implementing active error compensation as 
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a way to achieve MT accuracy improvements needs to 

ensure on-line evaluation of various error components. 

The ideal solution consists of measuring on-line the 

deviations of the cutting tool tip from its ideal trajectory 

resulting from various error components. This solution is 

however compromised by the lack of reliable sensors for 

direct measurements. The alternative approach presented 

here consist to measure off-line a set of error components, 

combine these errors to the MT parameters and operating 

conditions through an improved sensors fusion strategy to  

build error components prediction models, and synthesize 

the total positioning error through a global model.  

A. Error Integration Models 

In a typical MT, error is the difference between the 

actual and the anticipated response of the machine to a 

command issued according to accepted protocol. This 

error results in a deviation of the cutting tool tip from the 

desired trajectory. Assuming that the structural 

components of the MT are rigid bodies, the resultant error 

at the tool tip can be described by a combination of 

individual displacement and rotational path-dependant 

errors. The first step of a compensation scheme consists, 

as stated above, to establish a model in order to estimate 

the total positioning error and hence derive the correction 

vector. For this purpose, a general model has been 

developed from four sub-models: the basic geometric 

model, the coordinate system thermal drift model, the 

spindle error model, and the dynamic model. 

Basic geometric model: The total positioning error is 

defined with respect to a key reference point representing 

the origin of the MT coordinate system. Displacement of 

the cutting edge from the MT origin position [X0, Z0] to 

any position [X, Z] introduces an error vector x, z]. 

These position-dependent errors resulting from the 

displacement of the MT components are obtained through 

a combination geometric errors induced along a MT axis 

that are described with six degrees of freedom consisting 

of three translational and three rotational errors.  

Coordinate system thermal drift model: The second 

part of the general model intends to take into account the 

problem of the coordinate system drift due to the thermal 

disturbances. Assuming linear effects, the error vector is 

defined as the thermal drift. Obtained at various machine 

thermal conditions, the thermal drift vector is added to 

the error vector derived from the geometric model. 

Spindle error model: The third model is used to evaluate 

the spindle thermal drift errors. In a turning center, three 

components associated to the spindle thermal drift are 

critical to the machine accuracy. The axial thermal drift 

responsible for a displacement along the Z-axis, the radial 

thermal drift acting in a direction perpendicular to the Z-

axis, and the tilt thermal drift representing the angular 

deviation of the spindle axis in the xz-plane. 

Dynamic error model: The fourth model is used to 

evaluate the dynamic effects on the MT accuracy. The 

dynamic effects include here two categories of error 

sources: the cutting force effects and the inertial effects. 

As already mentioned, the components required sub-

models building and consequently the general global 

model are determined at various MT thermal states. The 

error components are obtained in terms of the MT 

measured parameters and operating conditions. As can be 

noticed, the absence of time as a variable is created by the 

need to simplify the modeling procedure. The use of time 

as a variable is susceptible of unnecessarily complicating 

the modeling procedure. The algorithm relative to the 

implementation of this model is schematically illustrated 

in Fig. 1. Process sensing devices monitoring the nominal 

positions of the machine slides, temperature at various 

positions on the machine structure, cutting forces, spindle 

speed, and feed-rate generate signals that are scanned at a 

constant sampling rate. At every sample, each individual 

error is predicted using the appropriate model. 

B. Sensor Fusion Strategy  

The on-line error compensation needs the prediction of 

various error components using multiple variable models 

at any location within the MT working space. These 

models are developed to include all factors contributing 

to the deviation of the cutting tool from the desired 

trajectory. Since error sources exhibit highly non-linear 

interactions with the MT operating conditions, a precise 

quantitative prediction of errors is difficult to achieve 

using theoretical analysis. Indeed, on-line errors 

estimation through multiple-input/output empirical 

models can allow faster processing and enhanced 

prediction accuracy. However, implementing this idea 

comes up with two major difficulties: The choice of the 

modeling technique and the selection of the most 

consistent variables to include in the model. 

 

Figure 1.  Schematic illustration of the models integration 

Model building analysis is often conducted using a 

large set of variables. From these candidate predictor 

variables, only a subset is indeed useful for predicting the 

optimal response. The identification of important input 

variables is crucial to the success of any empirical model. 

In this study, a comprehensive and systematic procedure 

designed for model building is presented. 

Modeling analysis: As suggested in many reports, 

ANN techniques have demonstrated real potential to 
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express the geometric path-dependent errors as a function 

of the cutting tool nominal position, temperature, cutting 

forces, speed and feed-rate. As compared to other 

modeling techniques, ANN provides a more effective 

modeling capability, particularly when the relationships 

between geometric, thermal and dynamic error 

components and total positioning errors are non-linear. 

ANN can automatically handle strong non-linearities, 

large number of variables and missing information. 

Because of their intrinsic learning capabilities, ANN can 

be used when there is no exact and explicit knowledge 

about the relationships between various variables. These 

very useful capabilities are helpful to reduce the 

measurement and the off-line calibration efforts. The 

important advantage of the ANN model over the other 

empirical models is that multiple error components can 

be easily established at the same time using only one 

model. The multi-input/output capability of the ANN not 

only appreciably simplifies the tedious task of modeling 

but also improves model accuracy by including the most 

significant interaction effects between the variables. 

Variable selection analysis: The selection of an 

appropriate modeling paradigm is not sufficient alone to 

ensure the best model. Model building analysis is often 

conducted with a large set of potential variables. From 

these variables, only a specific subset is useful. The 

identification of adequate combination of variables to 

include in the model remains an essential step and a 

prerequisite for the success of the modeling task.  

Three existing methods can be used to select the 

appropriate combinations of variables. These methods are: 

engineering judgment, correlation analysis and step-wise 

regression. However, none of these methods can identify 

the optimal models systematically. Based on individual 

knowledge and experience about MT and machining, the 

engineering judgment method is useful to suggest 

preliminary variables for further investigation. But, the 

use of a limited number of variables without exact 

knowledge of actual machine behaviors is generally risky 

and cannot lead systematically to the best combination of 

variables. The correlation analysis method selects the 

highly correlated predictor variables to include in the 

model, using the correlation coefficients as criteria. In 

this method, the partial correlations between the selected 

variables have to be explored otherwise the method is 

only suitable to find the model with a single variable. 

Since the partial correlations between response and 

variables are investigated, the step-wise regression 

method [12] is able to identify models with multiple 

variables. This method first includes the most strongly 

correlated variables and then adds or subtracts one 

variable at a time according to the values of an F-

distribution that estimates the contributions of the added 

or removed variables. However, the effect of combining 

two or more variables at a time is never considered. As 

the predictor variables are characteristically interrelated, 

this method could result in models with inconsistent 

variables selection. In addition to the above three 

methods, there are two other variable selection methods, 

forward selection and backward elimination [12]. These 

methods have similar disadvantages as the step-wise 

regression. Although traditional selection methods always 

offer the possibility to isolate one reduced model, they 

are unable to identify alternative candidate subsets of the 

same size or a model considered to be optimal according 

to various selection criteria. Hence, these methods can 

lead to poor results and often to different subsets since 

interactions between variables cannot be considered. 

Thus, the basic condition to successfully implement an 

optimal selection of variables requires a simultaneous 

application of multiple selection criteria. 

Modeling and variable selection procedure: The 

selection of the optimal combination of variables is based 

on comparing a complete model containing all variables 

and a model with a reduced number of variables. This 

process can be achieved by: (i) building a sufficient 

number of models, where each model is designed with a 

subset of specifically selected variables, (ii) evaluating 

the modeling and prediction performance of these models 

according to multiple criteria, and finally, (iii) estimating 

the effect of each variable on the models performance 

using appropriate statistical tools. 

Many statistical criteria can be used to assess whether 

a reduced model adequately represents the relationship 

between the thermal errors and the temperature variables. 

The evaluation of the performance of fitted models is 

based on the principle of minimizing several statistical 

criteria such as the residual sum of squared error (SSE), 

the residual mean square error (MSE), the total squared 

error (TSE), Mallows Cp statistics, and the coefficient of 

determination (R2). In most modeling techniques, a model 

is determined by minimizing SSE. MSE, Cp, and R2 are 

linear functions of SSE. Under a fixed number of 

variables, a set of variables minimizing SSE leads to MSE 

and Cp as the minimum, and R2 as the maximum. Among 

these criteria, R2 does not have an extreme value and 

tends to increase with the number of variables in the 

model. Consequently, this criterion can lead to subjective 

interpretations. If p among q independent variables are 

selected to form a model, the residual mean square error 

is MSEp = SSEp / n-p-1, where n is the total number of 

observations. The terms SSEp and n-p decrease with an 

increase in the number p of variables. Therefore, MSEp 

has the ability to show an extreme value. In this study, the 

judgment function consists in minimizing the training 

(MSEt), the validation (MSEv) and the total (MSEtot). 

In order to extract rapidly a cost-effective and 

optimized combination of variables to be included in the 

prediction models, an efficient experimental design 

method is used. Using Taguchi's orthogonal arrays, a 

quasi-optimal model can be designed by selecting the 

most sensitive group of variables that show high 

correlation with geometric deviations. Orthogonal arrays 

(OA) can significantly reduce the number of 

combinations to be tested where many parameters and 

potential combinations are involved [12]. The selection of 

the best model is based on the analysis of the effects of 
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each combination of variables on the model accuracy as 

well as on the estimation of the contribution of each 

variable to the reduction of modeling and prediction 

errors. The predictor variables that show high sensitivity 

on geometric deviations are potential candidates for use 

in the model. The OA-based model building procedure 

can be summarized in the following steps:  

 Collect data for models training and validation. 

All variable that may influence the machine 

accuracy must be identified and considered in the 

measurement tests;  

 Select a modeling method and performance 

criteria;  

 Select an appropriate OA to design the models  

 Train and test the generated models and evaluate 

their performances according to the selected 

criteria;  

 Determine the effect of each variable on every 

performance index. These effects can be 

considered as rates of reduction in the MSE values 

when a variable is input to the fitted model or not. 

Using these results, variables that contribute 

significantly to the models improvement are 

selected otherwise they are rejected;  

 Determine the fusion models configuration. Once 

the variables providing the best information on the 

error sources are identified, the best model can be 

built. 

III. MODELS BUILDING AND SIMULATION 

To build the ANN compensation models, the error 

components were classified into five groups having 

similar characteristics and requiring the same 

measurement procedures and instrumentation. These 

groups are the coordinate system thermal drift errors, the 

geometric errors, the cutting force induced errors, the 

inertial errors and the spindle thermal drift errors. 

A. Error Components Measurement 

Typical, regular three-axis MT have only three 

prismatic joints and a total of 21 independent systematic 

geometric error components, i.e., 18 errors (six each axis) 

in addition to three squareness errors. The geometric error 

components along a moving axis are described with six 

degrees of freedom error components consisting of three 

translational (ij - linear error and straightness errors) and 

three rotational or angular (ij - pitch, yaw and roll) errors. 

To compensate for these errors, they need to be evaluated. 

The traditional method uses commercially available 

machine tools calibration systems. Among these systems, 

laser interferometer is widely used. Geometric errors 

measurement was conducted using a 5528A-laser 

interferometer system. The displacement intervals for 

recording the error values are 10 mm along the X-axis 

and 20 mm along the Z-axis. The measurements results 

revealed the following remarks: (i) the coordinate system 

thermal drift error observed over a 12 hrs machine warm-

up introduced an error of about 20 m resulting from the 

machine frame thermal expansion, (ii) at an average 

temperature of 20.83°C, linear displacement error reaches 

15 m and 70 m along x-axis and z-axis respectively, 

exceeding the specified MT accuracy (± 20 m), (iii) 

evaluated at 21.17°C, the maximum straightness error 

reaches 10 m along the X-axis and 12 m along the Z-

axis, (iv) the yaw errors measured along the X and Z axis 

reaches 5 and 3 arcsec respectively. 

B. Error Components Modeling  

To provide on-line compensation, the error 

components are predicted using time-variant models 

through an improved sensors fusion strategy. These 

models are based on data derived from an array of 

sensors that monitor continuously the MT parameters 

related to the cutting tool nominal position, temperature 

at various locations, forces, vibrations, speed, and feed-

rate. To illustrate the procedure designed to build the 

ANN based sensors fusion error models, the three spindle 

thermal drift errors were considered. Spindle thermal 

errors (STE) can be observed as a displacement through 

space of the nominal axis of the spindle caused by 

thermally induced deformations of the spindle 

components. For CNC turning center, spindle drift errors 

include three errors: radial thermal drift (sx), axial 

thermal drift (sz), and tilt thermal drift (sy). As shown in 

Fig. 2, these error components are often measured by 

using capacitance probes mounted on the turret of the 

turning center. As a result, radial drift is provided by the 

average of probe #1 and probe #2 signals, axial drift is 

measured by probe #3, and tilt drift is calculated by the 

difference in the signals of probes #1 and #2. 

In any thermal error compensation scheme, sensor 

location is crucial. Whenever possible, the sensors have 

to be located directly on the structural elements 

undergoing thermal distortion. A total of sixteen 

thermistors were carefully installed throughout out the 

machine structure in order to monitor the temperature 

field in the main thermal part on the machine. Results 

from initial investigations indicated that some machine 

elements have only very minor temperature variations 

and some other elements are not correlated to the spindle 

thermal drift errors. These investigations suggested also 

that there was a strong relationship between thermal 

errors and the average temperature increase along the 

spindle, as well as the spindle speed. Hence, only 8 of the 

16 temperature sensors were selected as the practical 

temperature variables for this study. The actual locations 

of the 8 temperature sensors are listed in Table I. 

 
Figure 2.  Schematic representation of the used system for STE 

measurement using capacitance probes 
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In order to provide a modeling database and execute 

the modeling procedure, measurements of MT 

temperature variations and STE are required. STE are 

assumed to be strongly correlated to the temperature rises 

from a reference temperature. Since the environment 

temperature is the most stable variable on the machine, T1 

used in the modeling are the differences from this 

reference. In addition, the variables with small variations 

are removed, because they generally have no significant 

effect and could possibly induce noise-based predictions.  

TABLE I.  TEMPERATURE SENSOR LOCATIONS 

 
Thermal behaviour of any MT can be very complex, 

because different machine operations can warm up 

different portions of machine structure. Non-symmetric 

temperature distributions happen frequently. Thus, a 

variety of operating conditions are needed to create a 

wide range of machine thermal conditions. The proposed 

thermal error measurement system has been applied to 

the following operating condition cycles: (i) constant 

operating conditions where the MT runs for 4 hours at 

1000 rpm maximum spindle rotation and stops for 

another 4 hours, (ii) progressive operating conditions 

where the MT runs for 8 hours at a progressively 

increased / decreased spindle rotation (0, 1500, 3000, and 

4500 rpm at 10-minute intervals) and (iii) random 

conditions cycle where the MT runs for 8 hours at a 

randomly assigned spindle speed. The STE and the 

temperature history were continuously monitored under 

these selected running conditions. The STE and 

temperature variations histories measured under constant 

and progressive running conditions are shown in Fig. 3 

and 4. Measures acquired under random operating 

conditions present similar characteristics. As presented in 

Fig. 3, the temperature variations increase around the 

spindle with an average of 11.5°C. The temperature 

gradients in the other locations were relatively less 

important (4 to 7°C). In all cases, the temperature rise 

reached a peak after nearly four hours and became 

relatively constant. Fig. 4 shows the resultant STE 

variations. The maximum axial thermal drift reached 

about 19 m. The radial thermal drift and the tilt thermal 

drift were less large reaching 7 m and 3.25 arcsec. 

These Fig. s reveal that the STE and the temperature 

variation during the three operation cycles are correlated 

to the spindle speeds. From these results, a robust 

relationship can be observed between temperature 

variations and STE indicating that an accurate model can 

be reached by the proposed sensor fusion strategy. 

While various ANN techniques can be used in this 

approach, generalized feed forward network seems to be 

one of the most appropriate because of its simplicity and 

flexibility. Before selecting the variables and training the 

models, it was important to establish the network 

topology and optimize the training performances. The 

idea is to approximate the relationship between the 

network parameters and the complexity of the variables 

to be estimated. For this evaluation, 4 ANN architectures 

were studied. The best results were achieved using the 

[n|2n+1|3] network, where n is the number of inputs. 

Consequently, this network structure was selected. 

In order to test the validity of the modeling approach, 

three validation procedures (VP) are designed. In the first 

procedure (VP1), all the samples are used as training and 

also as validation samples. In second procedure (VP2), 

half of the samples are randomly picked as training 

samples, while the remaining samples are used for 

validation. In third procedure (VP3), the samples obtained 

under specific conditions are used as training samples 

while the remaining samples are used for validation. In 

the majority of previous studies, modeling performances 

are evaluated using only procedures similar to VP1. 

 
 

 

Figure 3.  Typical temperature variations during the operating cycles: 

(a) Constant conditions cycle and (b) Progressive conditions cycle   

 
 

 

Figure 4.  Typical STE variations during the operating cycles: (a) 

Constant conditions cycle and (b) Progressive conditions cycle 
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Two statistical indices, derived from ANOVA, are 

used to analyze the performance of the models: the 

percent (%) contributions and the average effects of 

variables included in each model. The % contribution of a 

variable reflects the portion of the observed total 

variation attributed to this variable. Ideally, the total % 

contribution of all considered variables must add up to 

100. The difference from 100 represents the contribution 

of some other uncontrolled modeling variables and 

experimental errors. The graph of average effects is an 

interesting way to visualize and estimate approximately 

the effects of each variable on the modeling performances. 

As the modeling procedure is designed using an OA, the 

estimates of the average effects will not be influenced. 

Both statistical indices are applied to all modeling 

performance criteria according to the three validation 

procedures. Our method for the selection of variables 

begins by choosing an OA that allows the design of 

models where all potential temperature variables are 

included. As illustrated in Table II, the OA that best fits 

this modeling procedure is a L8 with a total of 8 models 

to be built. The signs 1 and 0 indicate whether the 

variable is included in the model or not. Table II presents 

also the performances of each designed model for 

training and validation phases. Model deviation estimates 

are presented as a function of twenty-eight selection 

criteria. The design reveals that accurate relationships for 

error prediction can be achieved and shows that all 

models fitted the training and validation data relatively 

well as indicated by the MSE values.  

Using these results, the average effects of each variable 

on the performance of the models was evaluated. Graphs 

of average effects in Fig. 5 show that the MSE values 

related to the three VP are affected at different degrees by 

the temperature variables. In these graphs, the horizontal 

axis indicates the variable levels. The plotted points 

correspond to the averages of observations realized for 

each variable level. These graphs reveal that T2, T3, 

T6 and T7 are the variables that predominantly affect 

the models performance by contributing to significant 

reduction of the MSE values. The variables T5 and T8 

have much less pronounced effects. The variable T4 has 

a marginal effect and sometimes contributes in increasing 

MSE values. Similar conclusion can be clearly 

established from the % contributions. The average effects 

of each input variable on the twenty-eight MSE values, 

represented by its % contribution in improving models 

accuracy, are illustrated in Table III. The results show 

that the error contributions remain relatively low. This 

implies that no important variable was omitted in the 

procedure. 

TABLE II.  MODELS EVALUATION USING MSE VALUES 

Models identification M1 M2 M3 M4 M5 M6 M7 M8 

T
em

p
er

at
u
re

 

v
ar

ia
b
le

s 

T2 1 1 1 1 0 0 0 0 

T3 1 1 0 0 1 1 0 0 

T4 1 1 0 0 0 0 1 1 

T5 1 0 1 0 1 0 1 0 

T6 1 0 1 0 0 1 0 1 

T7 1 0 0 1 1 0 0 1 

T8 1 0 0 1 0 1 1 0 

V
P

1
 

T
ra

in
in

g
 

M
S

E
 v

al
u

es
 

sx 0.1119 0.2274 0.2149 0.2399 0.2464 0.2417 0.2949 0.2519 

sz 0.3141 0.7489 0.6994 0.6854 0.6263 0.6716 0.8363 0.7246 

sy 0.0241 0.0499 0.0532 0.0582 0.0544 0.0566 0.0684 0.0619 

VP1_MSEt 0.4501 1.0262 0.9675 0.9835 0.9270 0.9698 1.1996 1.0384 

V
al

id
at

io
n

 

M
S

E
 v

al
u

es
 

sx 0.1119 0.2274 0.2149 0.2399 0.2464 0.2417 0.2949 0.2519 

sz 0.3141 0.7489 0.6994 0.6854 0.6263 0.6716 0.8363 0.7246 

sy 0.0241 0.0499 0.0532 0.0582 0.0544 0.0566 0.0684 0.0619 

VP1_MSEv 0.4501 1.0262 0.9675 0.9835 0.9270 0.9698 1.1996 1.0384 

VP1_MSEtot 0.9002 2.0524 1.9350 1.9670 1.8541 1.9397 2.3992 2.0768 

V
P

2
 

T
ra

in
in

g
 

M
S

E
 v

al
u

es
 

sx 0.1947 0.3204 0.2654 0.2638 0.2556 0.2784 0.3357 0.2662 

sz 0.5968 0.8192 0.8563 0.8176 0.7819 0.7694 0.9320 0.7775 

sy 0.0447 0.0553 0.0601 0.0596 0.0540 0.0578 0.0731 0.0641 

VP2_MSEt 0.8362 1.1949 1.1818 1.1410 1.0915 1.1056 1.3408 1.1078 

V
al

id
at

io
n

 

M
S

E
 v

al
u

es
 

sx 0.2575 0.3293 0.2200 0.2400 0.2324 0.2720 0.2500 0.2100 

sz 0.6662 0.8779 0.9271 0.8779 0.8605 0.8481 0.9688 0.8548 

sy 0.0538 0.0717 0.0727 0.0790 0.0662 0.0757 0.0945 0.0810 

VP2_MSEv 0.9775 1.2789 1.2198 1.1969 1.1591 1.1958 1.3133 1.1458 

VP2_MSEtot 1.8137 2.4738 2.4016 2.3379 2.2506 2.3014 2.6541 2.2536 

V
P

3
 

T
ra

in
in

g
 

M
S

E
 v

al
u

es
 

sx 0.008 0.0181 0.0175 0.0176 0.0169 0.0174 0.0213 0.019 

sz 0.0545 0.1215 0.1037 0.1077 0.103 0.1119 0.1379 0.116 

sy 0.0052 0.0116 0.0115 0.0116 0.011 0.0109 0.014 0.0119 

VP3_MSEt 0.0677 0.1512 0.1327 0.1369 0.1309 0.1402 0.1732 0.1469 

V
al

id
at

io
n

 

M
S

E
 v

al
u

es
 

sx 2.0253 4.0975 3.7863 3.787 3.6762 3.8725 4.8 4.3223 

sz 17.5589 24.97 23.6666 24.0767 23.8669 24.7961 27.7976 26.4111 

sy 1.0526 1.323 1.5232 1.425 1.5982 1.5315 2.0669 1.8318 

VP3_MSEv 20.6368 30.3905 28.9761 29.2887 29.1413 30.2001 34.6645 32.5652 

VP3_MSEtot 20.7045 30.5417 29.1088 29.4256 29.2722 30.3403 34.8377 32.7121 

VP1-3_MSEtot 23.4184 35.0679 33.4454 33.7305 33.3769 34.5814 39.8910 37.0425 
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Figure 5.  Average effects of each temperature variable in increasing / 

decreasing the MSE values 

Assuming a limit of 10%, the % contribution 

coefficients from the three VP suggest that the variables 

T4, T5, and T8 have negligible effects and confirm 

that only the temperature variables T2, T3, T6, and 

T7 have significant effects on the designed models. 

These results make possible the identification of four 

quasi-optimal model (QOM) configurations QOM_VP1, 

QOM_VP2, QOM_VP3 and QOM_VP1-3 related to VP1, 

VP2, VP3 and the total MSE (VP1-3) respectively. Table 

IV presents the QOM achieved by setting each selected 

variable at a level that minimizes the MSE values. In this 

case, because VP1, VP3, VP1-3 suggest T2, T3, T6, and 

T7 as optimal combination and VP2 suggests T3, T6, 

and T7 as optimal combination, only two QOM models 

(QOM1 and QOM2) were built and tested. 

The assessment of the quasi-optimal models using the 

three VP and the performance criteria demonstrates that 

the two QOM perform better than the 8 former ones. 

However, when comparing the models with each other, 

there is a clear superiority of QOM1. Using VP1, the two 

models provide a good agreement between real and 

estimated thermal errors with a correlation coefficient 

greater than 0.95. QOM1 presents the best results with 

VP1. This is due to the fact that QOM_VP1 is based on 

100% of the available information and the validation test 

was performed using training samples. In VP2 and VP3, 

the performances of the two models are similar with a 

small advantage for the model QOM2 in the validation 

phase. Moreover, if we consider VP1-3_MSEtot as main 

criteria, the results show that the error contribution 

remains relatively low (under 5%). This implies that no 

important variable was omitted in the procedure. Hence, 

the global quasi-optimal model (GQOM) including T2, 

T3, T6, and T7 as inputs was built and tested. 

In order to verify the prediction accuracy in conditions 

not included in the training and the validation sets, a new 

constant and random speed tests were conducted. The 

performances of the model demonstrate that the resultant 

model can predict thermal errors efficiently with accuracy 

better than ±5% for varying or new operating conditions. 

The results suggest that only the temperature variations 

around the spindle have decisive effects on the STE. This 

implies that the major heat source comes from the spindle 

rotation. Globally, the modeling procedure reveals that 

each error component depends strongly on the 

temperature distributed along its generative axis. The 

models for the other error components prediction are 

found in a similar manner. The results confirm that the 

thermal errors are more conditioned by the temperatures 

at local and specific positions than by the temperatures at 

randomly distributed locations in the MT workspace. 

TABLE III.  (%) CONTRIBUTION OF VARIABLES IN REDUCING MSE 

VALUES 

% Contribution 
Predictor variables 

T2 T3 T4 T5 T6 T7 T8

V
P

1
 

T
ra

in
in

g
 sx 35.67 17.83 0.32 3.81 21.11 8.95 - 

sz 12.45 25.46 - 9.19 17.59 27.34 6.14 

sy 30.96 31.9 1.88 5.78 11.29 7.26 - 

VP1_MSEtt 18.40 24.69 - 7.87 18.56 21.57 4.15 

V
al

id
at

io
n
 

sx 35.67 17.83 0.32 3.81 21.11 8.95 - 

sz 12.45 25.46 - 9.19 17.59 27.34 6.14 

sy 30.96 31.9 1.88 5.78 11.29 7.26 - 

VP1_MSEv 18.40 24.69 - 7.87 18.56 21.57 4.15 

VP1_MSEtot 18.39 24.69 - 7.87 18.56 21.57 4.15 

V
P

2
 

T
ra

in
in

g
 sx 6.98 5.36 1.63 4.40 27.23 45.80 - 

sz 5.65 33.75 1.89 - 23.96 31.67 2.71 

sy 22.77 54.06 0.79 0.56 6.15 15.13 - 

VP2_MSEtt 7.45 26.18 0 0.73 25.56 37.15 1.93 

V
al

id
at

io
n
 

sx 7.74 36.69 7.74 9.75 9.93 21.21 - 

sz 7.36 31.99 4.57 - 18.77 29.73 5.50 

sy 20.07 45.28 - 4.54 9.52 14.69 0.97 

VP2_MSEv 2.90 11.60 - 3.24 28.54 47.94 1.96 

VP2_MSEtot 5.46 19.73 - 1.58 27.17 42.07 1.99 

V
P

3
 

T
ra

in
in

g
 sx 20.21 25.6 - 7.30 16.00 18.35 5.08 

sz 20.39 17.03 - 10.33 21.72 27.09 3.16 

sy 16.07 28.37 - 3.71 19.81 17.9 3.71 

VP3_MSEtt 20.49 19.24 - 9.66 21.22 25.65 3.72 

V
al

id
at

io
n
 

sx 24.37 25.18 - 8.81 15.25 20.75 3.35 

sz 31.34 22.85 - 10.69 13.52 17.13 4.32 

sy 54.36 33.55 0.41 - 3.91 5.11 0.44 

VP3_MSEv 32.03 24.53 - 8.71 13.21 17 4.2 

VP3_MSEtot 31.94 24.5 - 8.72 13.26 17.07 4.2 

VP1-3_MSEtot 29.26 24.69 - 8.38 14.59 18.81 4.22 

TABLE IV.  QUASI-OPTIMAL MODELS EVALUATION AND COMPARISON 

USING VARIOUS MSE VALUES 

Quasi-optimal 

models 

identification 

QOM1 QOM2 
GQOM 

VP1 VP3 VP1-3 VP2 

T
em

p
er

at
u

re
 

v
ar

ia
b
le

s 

T2 1 1 1 0 1 

T3 1 1 1 1 1 

T4 0 0 0 0 0 

T5 0 0 0 0 0 

T6 1 1 1 1 1 

T7 1 1 1 1 1 

T8 0 0 0 0 0 

V
P

1
 MSEt 0.40090 0.41261 0.40090 

MSEv 0.40158 0.53114 0.40158 

MSEtot 0.80316 0.94375 0.80316 

V
P

2
 MSEt 0.35750 0.38326 0.35750 

MSEv 0.54341 0.43526 0.54341 

MSEtot 0.90092 0.81851 0.90092 

V
P

3
 MSEt 0.16666 0.21075 0.16666 

MSEv 19.30706 19.29824 19.30706 

MSEtot 19.47372 19.50899 19.47372 

VP1-3_MSEtot 21.17779 21.27126 21.17779 

238

Journal of Automation and Control Engineering Vol. 1, No. 3, September 2013



C. Models Integration 

Once the various individual error models were 

established, the compensation values x and z are 

synthesized using the algorithm illustrated in Fig. 1. 

Simulation tests conducted using various MT conditions 

display the effectiveness of the proposed one-line 

identification and compensation approach. Fig. 6 and 7 

present measured and predicted total positioning errors 

x and z in the xz-plane at an average temperature of 

22.93°C. Before compensation, maximum errors are 

about 35 m and 65 m in X and Z directions 

respectively. As illustrated in Fig. 8, residual errors 

estimated after compensation are within a 4 m range. 

0
200

400
600

800

0
100

200
300

400
0

10

20

30

40

Z (mm)X (mm)

D
x

 (
µ

m
)

0
200

400
600

800

0
100

200
300

400
0

20

40

60

80

Z (mm)X (mm)

D
z 

(µ
m

)

 

Figure 6.  Measured X and Z error surfaces in the xz-plan 
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Figure 7.  Predicted X and Z error surfaces in the xz-plan 
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Figure 8.  Residual error surfaces in the xz-plan after compensation 

IV. CONCLUSION 

Machine tools accuracy is affected by various errors 

related to geometric imperfections, thermal deformations, 

and dynamic disturbances. These errors can be 

compensated efficiently when using accurate and 

efficient error prediction models. This paper presents a 

comprehensive and systematic ANN based sensor fusion 

approach designed to support the implementation of 

adaptive software error compensation for enhancing the 

accuracy of CNC machine tools. The proposed approach 

is based on continuous monitoring of various sensors to 

relate geometric, thermal and dynamic errors to the 

machine tool operating conditions and build efficient one-

line error prediction and integration models. The 

combination of ANN modelling capability to an 

improved variables selection procedure provides a 

powerful fusion strategy. A performance evaluation 

demonstrates that the proposed approach can lead to a 

consistent model able to provide accurately and reliably 

an appropriate error identification and compensation 

under variable machine tool conditions. 

REFERENCES 

[1] R. Ramesh, M. A. Mannan, and A. N. Poo, “Error compensation 

in machine tools - A review,” International Journal of Machine 

Tools and Manufacture, vol. 40, no. 9, pp. 1235-1284, 2000. 

[2] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. 

Schmitt, and F. Delbressine, “Geometric error measurement and 

compensation of machines - An update,” CIRP Annals - 

Manufacturing Technology, vol. 57, no. 2, pp. 660-675, 2008. 

[3] X. Li, “Real-time prediction of workpiece errors for a cnc turning 

centre,” International Journal of Advanced Manufacturing 

Technology, vol. 17, pp. 649-669, 2001. 

[4] S. Mekid and T. Ogedengbe, “A review of machine tool accuracy 

enhancement through error compensation in serial and parallel 

kinematic machines,” International Journal of Precision 

Technology, vol. 1, no. 3-4, pp. 251-286, 2010. 

[5] A. C. Okafor and Y. M. Ertekin, “Vertical machining center 

accuracy characterization using laser interferometer,” Journal of 

Materials Processing Technology, vol. 105/3, pp. 394-420, 2000. 

[6] M. A. Donmez, D. S. Blomquist, R. J. Hoccken, C. R. Liu, and M. 

M. Barash, “A general methodology for machine tool accuracy 

enhancement by error compensation,” Precision Engineering, vol. 

8, no. 4, pp. 187-196, 1986. 

[7] P. M. Ferreira and R. C. Liu, “A method for estimating and 

compensating quasi-static errors of machine tools,” Journal of 

Engineering for Industry, vol. 115, no. 1, pp. 149-159, 1993. 

[8] N. A. Barakat, A. D. Spence, and M. A. Elbestawi, “Adaptive 

compensation of quasi-static errors for an intrinsic machine,” 

International Journal of Machine Tools and Manufacture, vol. 40, 

no. 15, pp. 2267-2291, 2000.  

[9] J. W. Fan, J. L. Guan, W. C. Wang, Q. Luo, X. L. Zhang, and L.Y. 

Wang, “A universal modeling method for enhancement the 

volumetric accuracy of CNC machine tools,” Journal of Materials 

Processing Technology, vol. 129, no. 1-3, pp. 624-628, 2002. 

[10] C. D. Mizea and J. C. Ziegertb, “Neural network thermal error 

compensation of a machining center,” Precision Engineering, vol. 

24, pp. 338-346, 2000. 

[11] J. M. Finesa and A. Agahb “Machine tool positioning error 

compensation using artificial neural networks,” Engineering 

Applications of Artificial Intelligence, vol. 21, no. 7, pp. 1013-

1026, 2008. 

[12] G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for 

Experimenters - An Introduction to Design, Data Analysis, and 

Model Building, John Wiley & Sons, 1978. 
 

Abderrazak El Ouafi is a professor in the Department of Mathematics, 

Computer Science and Engineering at the University of Quebec at 

Rimouski. His research interests are mainly oriented in precision 

engineering, manufacturing system design and control, performance 

enhancement of manufacturing processes and intelligent control related 

to sensor fusion, neural networks and fuzzy control. 
 

 

Noureddine Barka is an assistant professor in the Department of 

Mathematics, Computer Science and Engineering at the University of 

Quebec at Rimouski. His research field includes manufacturing 

materials, CAD/CAM, manufacturing processes improvement, 

experimental design and quality control for industrial applications.

 

239

Journal of Automation and Control Engineering Vol. 1, No. 3, September 2013




