
Increasing the Productivity of Automation Tool

by Developing Socket

Steven Fernandes and Josemin Bala
Steven Fernandes and Josemin Bala are with Department of Electronics and Communication Engineering,

 Karunya University, Coimbatore, India

Abstract—Socket is a wrapper around the automation tool

which needs to be tested and it is intended to check the

effectiveness of the automation tool. The main functionality

of Socket includes Auto generation of test cases, parallel

firing of auto generated test cases and Auto report

generation. Auto test case development is a vital part to

check the quality and effectiveness of the automation tool.

Parallel firing of auto generated test cases reduces the

testing time considerably and Auto report generated by

consolidating all the log files reduces testing complexity.

The proposed Socket reduces the testing time of the

automation tool from 8-10 weeks to 4-5 hours. Manual labor

is reduced from a team of 8 members to 2. The accuracy of

the automation tool tested was increased from 45% to 92%

and the overall productivity of the automation tool was

increased to 99.8%.

Index Terms—socket, automation tool, test cases.

I. INTRODUCTION

In every business environment, for a project to be most

successful, quality must be maximized while minimizing

cost and keeping delivery time short [1]. Research has

shown that at least 50% of total software cost is

comprised of testing activities [2], [3]. To optimize the

time and cost spent on testing, prioritization of test case

is beneficial. Before preparation of test case a test plan is

prepared. A test plan is a document, detailing a

systematic approach to test a system which can be a

machine or software. In principle, the test plans should

cover all important scenarios. Test plan is prepared when

the automation tool is in the development phase based on

requirement specific, design documents.

Specification based test plan preparation is a general

approach used so that test plan would contain a list of

probable test cases. Automation tool is a black box that

transforms inputs into desired outputs. The functionality

of this black box is defined as per the specification

required to carry out this transformation.

IEEE Std 610-1990 defines test case “A set of test

inputs, execution conditions, and expected results

developed for a particular objective, such as to exercise a

particular program path or to verify compliance with a

specific requirement” [4]. IEEE Std 829-1983 defines test

Manuscript received December 25, 2012; revised January 5, 2013.

case “Documentation specifying inputs, predicted results,

and a set of execution conditions for a test item” [5].

Although there are several ways of defining a test case

practically all the definitions imply that a test case will

either pass or fail that is how the tester verifies it as per

the requirement.

The Socket is a script written using scripting languages,

Perl, Tcl, It is intended to generate the test cases

automatically which are of 2 types. Firstly test cases

generated based on usage, secondly test cases based on

connectivity. The purpose of Socket is to reduce manual

intervention, decrease testing time, reduce testing

complexity and thus increase the productivity of the

automation tool.

The remaining of the paper is organized as follows:

Section II provides a brief overview of Socket, Section

III presents a case study of Socket on an automation tool.

Section IV reports the experimental results, Section V

draws the conclusion.

II. RELATED WORK

In common design flows of system-on-chip (SoC)

designs functional verification requires 70% of the entire

design effort and most of the effort for functional

verification is spent on finding and creating adequate test

cases to verify that the modeled design corresponds to its

specification[6].But the Socket proposed does automatic

test case generation. Regression testing method used

earlier to generate test cases manually is an expensive

testing process and it is used to validate new features,

detect regression faults, which occurs continuously

during the development lifecycle. Due to time and

resource constraints, it may not be possible to execute all

the test cases on every testing iteration [7], [8].

Since test case prioritization is vital and there are

numerous techniques in this regard [9]–[15], the Socket

prioritizes the test cases automatically. After test case

prioritization is completed then test cases are prepared

automatically by the Socket. There are some other

systems which make the test cases automatically based

on specification of software and requirement [16]–[18].

But according to description provided by testers, system

could not understand the different information which

expresses the same means in the function description and

hence manual revisiting after the generation of test case

was necessary [19].

177©2013 Engineering and Technology Publishing
doi: 10.12720/joace.1.2.177-180

Journal of Automation and Control Engineering, Vol. 1, No. 2, June 2013

Industrial automation systems are tested nowadays

mainly via system tests at a very late stage of

development and these tests are conducted manually, are

time-consuming and cost-intensive [20]. But the Socket

proposed does testing of the automation tool very early in

the development stage by parallel firing of the auto

generated test cases and hence reducing manual

intervention and testing time.

The Socket initially prioritizes the test cases which are

generated automatically, then fires those auto generated

test cases in parallel and finally generates a consolidated

report automatically and gives a pass/fail status

depending on the test case conditions.

III. A CASE STUDY

The ABC Automation tool generates an output file

based on the inputs provided to it. The Socket uses the

inputs given to the Automation Tool for testing. The

most basic unit that this tool considers is called a cell.

The different types of cells are Combinational and

Sequential. There are also certain cells which should not

be considered and these are called Cell not be tested. The

cell not be tested are those cells having only inputs and

no outputs and also if the cells will be not be considered

in the next version of the tool then they will be

considered here.

The combination of all these cells together forms a

Reference library. The input files of this Automation tool

will contain

 Reference cells: The most reliable cell in terms of

power and leakage is considered as a Reference

Cell used in Reference library.

 Connectivity file:Connectivity information of

various cells is provided in Connectivity file.

 Configuration file: The path for the Reference

Libraries, Reference Cells is provided in

Configuration file.

 Group file: This will characterize the cells of

similar type together. All the Combinational Cells

would belong to one group.

 Attribute file: This gives the attributes of the cells

and also of the pins considered in each cell.

 Controller unit: Checks how long the exact

functionality is maintained as per the specified

architecture when extreme conditions are applied

like temperature, pressure is applied.

 Interface units: The Interface Units are placed at

the inputs and at the outputs.

The input file also contains information regarding the

number of repetitions for each group. This Automation

tool is intended to provide output file containing the

exact connectivity of all the cells present in the Reference

library based on the specification, cell list formed

contains the total number of cells present in the library

and finally it should also generate all the intermediate

output files.

A. Auto Test case Prioritization

Test case prioritization schedules the test case in an

order that increases the effectiveness in achieving some

performance goals. Socket prioritizes the test case

automatically such that the most severe faults are

detected at the earliest in the testing life cycle. The

prioritization is divided into 4 steps.

 Check whether the tool completes its entire run on

different systems.

 The tool needs to run until specified break points.

 The connectivity information present in the output

file must be as specified at the input.

 The tool needs to generate a suitable

error/warning when certain input files are not

available or the path specified for it is incorrect.

B. Auto Test case Development Technique

After the prioritization, the Socket generates the test

cases automatically. To increase the testing coverage and

efficiency the Socket divides the auto generation of test

cases into four phases

Test cases for Phase 1:

 If a cell contains two outputs then the cell name

should be repeated twice at the intermediate

output files but the cell list should contain it only

once.

 The file that contains the Reference library path

should be exactly same as the Reference library

present at the input.

 Certain cells which are not be tested as should not

be considered from phase 1 itself.

 Phase 1 end report should contain the details of

the cells used in Reference library and also details

of the pin attributes for each cell.

Test cases for Phase 2:

 The different types of cells present in the library

together need to form a group based on the

information in the group file.

 The intermediate file that is formed at this stage

should contain information regarding the inputs

and outputs of the cells present in the Reference

library which needs to be in accordance to

attribute file.

 The Connectivity information for each cell should

be passed appropriately.

 The Reference cells needs to be picked

appropriately from the specified Reference library.

 Merging of similar types of cells between the two

libraries need to be possible.

Test cases for Phase 3:

 If the paths present in the configuration file are

incorrect then errors needs to be displayed in log

files.

 If any input files were not provided then suitable

error needs to be given.

 If a Reference cell mentioned in any of the input

files is not present at that particular library then it

is give a fatal error.

 The number of times the each group is repeated

should be as per the information given at the input

else error msg.

Test cases for Phase 4:

178

Journal of Automation and Control Engineering, Vol. 1, No. 2, June 2013

 The sourced version of the core assembler needs

to be compatible with the tool.

 All the intermediate log files need to be

consolidated.

 Certain environment variables needed to run the

tool if not set appropriately then it should display

a suitable error.

 Final output file should have exact connectivity

for all the cells and needs to match with the

specified architecture.

IV. RESULTS AND DISCUSSION

The auto generated test cases needs to be fired parallel.

For each test case fired there would be corresponding job

id. This job id is stored and only when this job is

completed the status of the test case is passed to the final

auto generated report.

If these test cases are fired serially then it would

consume large amount of time, typically it is about 12 to

14 days but auto generation of test cases and parallel

firing of test cases the task is completed in 1 to 2 hrs.

A. Results for phase 1

The inputs given for phase 1 Socket are auto generated

test cases.

 FD2TQX4 is a sequential cell having two outputs

Q and QN.

 DE.lib is a Reference library which is at present at

/home/stevent/DE.lib

 Cell not be tested CAP12

TABLE I. OUTPUT FOR PHASE 1 SOCKET

Cell list Reference library path Cell not be tested

FD2TQX4 /home/stevent/DE.lib CAP12

Phase 1 end report that contains the details of the cells

used in Reference library and also details of the pin

attributes for each cell is checked manually.

B. Results for phase 2

The inputs for phase 2 Socket auto generated Socket

test cases.

 Library DE.lib containing Combinational cells

AND2VT, AND3VT, AND4VT. Sequential cells

FD2TQX4, FD2STQX4, FD2TQX2.

 The Reference cell is AND2VT.The group G1

needs to contain all Combinational cells and

group G2 all Sequential cells.

TABLE II. OUTPUT FOR PHASE 2 SOCKET

G1 G2 Reference cell path

AND2VT

AND3VT

AND4VT

FD2TQX4

FD2STQX4

FD2TQX2

/home/stevent/DE.lib

/home/stevent/DE.lib

/home/stevent/DE.lib

For merging of similar type of cells we consider a

library FG.lib containing cells Combinational cells

OR2VT, OR3VT. Sequential cells FD2QX4,

FD2QX8.After merging all the Combinational cells need

to be in G1 and all the Sequential cells in G2 and the

Reference cell path is given

TABLE III. MERGING OF GROUPS IN PHASE 2 SOCKET

G1 G2 Reference cell path

AND2VT

AND3VT

AND4VT

OR2VT

OR3VT

FD2TQX4

FD2STQX4

FD2TQX2

FD2QX4

FD2QX8

/home/stevent/DE.lib

/home/stevent/DE.lib

/home/stevent/DE.lib

/home/stevent/FG.lib

/home/stevent/FG.lib

C. Result for phase 3

The inputs given for phase 3 Socket is the paths of the

configuration file and also an input file which contains

details regarding the Reference cells and the Number of

repetitions for each group. If there is any mismatch in

any of these files or if these files are not existing then the

log file generated will have the following errors

 *E The configuration file path incorrect.

 *E The input file does not contain information

about the number of repetitions.

 *E The reference cell is not present in the path

specified.

 *E The reference library does not exist.

D. Result for phase 4

Inputs given to phase 4 Socket involve sourcing the

Core Assembler, setting the environment variables used

to run the tool and intermediate log files generated. The

final output generated at the end of phase 4 should

contain the exact connectivity for all the cells.

V. CONCLUSION

As technology continues to grow and become more

complex, testers will be faced with tougher challenges to

fully test the automation tool within the time given to

them. In this paper, we develop a Socket which is

adaptable for any version of the automation tool, since it

is a generic script. The final Socket output would depend

on the following conditions. If there exist an error in any

of the log files and if the final output file is not generated

because of the errors then its status would be pass else it

would be fail.

The output of the automation tool should have the

connectivity as per the design specified. To validate the

connectivity another tool is invoked which would

generate a connectivity based output file and this file is

used for comparison. Hence the second pass/fail status

would be based on connectivity.

By developing Socket the testing time of the

automation tool was reduced from 8-10 weeks to 4-5

hours. The manual labor was also reduced from a team of

8 members to 2. The accuracy of the automation tool

tested was increased from 45% to 92%. It also reduces

testing complexity and manual intervention to a large

extent. All these factors increase the overall productivity

of the automation tool to 99.8%.

REFERENCES

[1] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing

requirements,” IEEE Software, vol. 14, no. 5, pp. 67-74, Sep-Oct

1997.

[2] M. Harrold, “Testing: A roadmap,” in Proc. International Conf.

on Software Engineering, Limerick, Ireland, 2000, pp. 61-72.

179

Journal of Automation and Control Engineering, Vol. 1, No. 2, June 2013

[3] L. Tahat, B. Vaysburg, B. Korel, and A. Bader, “Requirement-

based automated black-box test generation,” in Proc. 25thAnnual

International Computer Software and Applications Conf.,

Chicago, Illinois, 2001, pp. 489-495.

[4] IEEE Standard Computer Dictionary. A Compilation of IEEE

Standard Computer Glossaries.

[5] IEEE Standard for Software Test Documentation.

[6] C. Kirchsteiger, J. Grinschgl, C. Trummer, C. Steger, R. Weiss,

and M. Pistauer, “Automatic test generation from semi-formal

specifications for functional verification of system-on-chip

designs,” in Proc. Systems Conf., 2008 2nd Annual IEEE, May

2008.

[7] H. Leung and L. White, “Insights into regression testing,” in

Proc. International Conf. on Software Maintenance, Miami,

Florida, U.S.A., Oct 1989, pp 60-69.

[8] K. Onoma, W. Sai, M. Poonawala, and H. Suganuma,

“Regression testing in an industrial environment,”

Communications of the ACM, vol. 41, no. 5, pp. 81-86, May

1998.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing test

cases for regression testing,” in Proc. International Symposium

on Software Testing and Analysis, Aug 2000, pp. 102-112.

[10] S. Elbaum, A. G. Malishvesky, and G. Rothermel, “Test case

prioritization: A family of empirical studies,” IEEE Transactions

on Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[11] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,

“Selecting a cost-effective test case prioritization technique,”

Software Quality Journal, vol. 12, no. 3, pp. 185-210, 2004.

[12] D. Jeffrey and N. Gupta, “Test case prioritization using relevant

slices,” in Proc. 30th Annual International Computer Software

and Applications Conf., 2006, pp. 411-420.

[13] J. Kim and A. Porter, “A history-based test prioritization

technique for regression testing in resource constrained

environments,” in Proc. 24th International Conf. on Software

Engineering, May 2002, pp. 119-129.

[14] Z. Li, M. Harman, and R. Hierons, “Search algorithms for

regression test case prioritization,” IEEE Transactions on

Software Engineering, vol. 33, no. 4, pp. 225-237, April 2007.

[15] A. Malishevsky, J. Ruthruff, G. Rothermel, and S. Elbaum,

“Cost-cognizant test case prioritization,” Technical Report TR-

UNL-CSE-2006-0004, March, 2006.

[16] K. Wee, C. KhooSiau, and Y. Sun, “Automated generation of

test programs from closed specifications of classes and test

cases,” in Proc. 26th International Conf. on Software

Engineering, 2004, pp.96-105.

[17] L. Peng, “Test case generation for specification-based software

testing,” in Proc. Conf. of the Centre for Advanced Studies on

Collaborative Research, 1994, pp. 41.

[18] M. Fisher, M. Cao, R. Gregg, R. Curtis, and M. Margaret,

“Automated test case generation for spreadsheets,” in Proc. 24th

International Conf. on Software Engineering, 2002, pp.141-153.

[19] Z. Ning, G. Yang, “An automate test case generation approach:

using match technique,” Computer and Information Technology,

pp. 922-926, 21-23 Sept 2005.

[20] Krapfenbauer, H. Ertl, D. Zoitl, and A. Kupzog, “Improving

component testing of industrial automation software,”

Computing in the Global Information Technology, pp. 259, 2009.

Steven Fernandes is a first author. He received

his M.Tech in Microelectronics from Manipal

Institute of Technology, Manipal, India, 2011. He

is a research scholar in Department of Electronics

and Communication Engineering at Karunya

University, Coimbatore, India. His field of interest

includes face detection and recognitions using

genetic algorithms.

osemin Bala is a corresponding author. She

received her Ph.D. from Anna University,

Chennai, India, 2008. She is Professor and Head

of Department, Electronics and Communication,

Karunya University, Coimbatore, India. Her areas

of interest are digital image processing.

Author’

s formal photo

Author’

s formal photo

180

Journal of Automation and Control Engineering, Vol. 1, No. 2, June 2013

