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Abstract—This paper addresses the fusion processing 

techniques of multi-sensor data perceived through IR 

sensors of the military robots for surveillance, in which they 

are positioned in a limited range with a close distance 

between each of the robots. To combine multi-sensor data 

from distributed battlefield robots, we propose a set of 

fusion rules to formulate the combined prediction from 

multi-source data expressed in degrees of reliability for the 

type of a target that has the mathematical properties of 

probabilities. We have implemented three fusion operators 

to compare the capabilities of their fusion processing, and 

have experimented them in simulated, uncertain battlefield 

environments. The experimental results show that the fusion 

of multi-sensor data from military robots can be successfully 

tested in randomly generated military scenarios. 

 

Index Terms—Military surveillance robots, Multi-sensor 

fusion, Techniques for fusion processing 

 

I. INTRODUCTION 

Battlefield robots for surveillance equipped with IR 

sensors keep a close watch on moving targets. These 

military robots are semi-autonomously operated; that is, 

their actions are mostly decided by themselves, but 

sometimes controlled by their commanders. The multiple 

robots periodically scan regions and, when they spot any 

possible threats, inform the control center of their 

estimations. The control center then fuses evidences 

multi-sensed from different military robots. The 

commander at the control center [1] provides feedbacks 

on the estimations of the multiple robots based upon the 

results of fusion processing. 

Information fusion from different sensors has become 

a crucial component in distributed military surveillance 

environments [2]. In this paper, we focus on the 

information fusion processing that refines the estimation 

of types for a specific target and improves the reliability 

of its identification, continuously seeking out its positions. 

We suggest a set of fusion operators [3] to formulate the 

combined prediction from multi-source data expressed in 

degrees of reliability for the type of a target that has the 

mathematical properties of probabilities. 

In the following section, we will describe how to 

combine multi-sensor data from military robots for 

surveillance. In Section III, we validate our framework 
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empirically and present the experimental results using our 

simulator. In conclusion, we summarize our results and 

discuss further research issues. 

II. COMBINING MULTI-SENSOR DATA FROM 

DISTRIBUTED ROBOTS 

We combine multi-sensor data from distributed 

battlefield robots. The battlefield robots estimate the 

types of targets using their sensors in a given 

environment. After getting the sensor data, the multiple 

robots inform the control center of their estimations. The 

control center then fuses evidence multi-sensed from 

different military robots. 

A. Combined Prediction Using Fusion Rules 

The combined prediction given a specific target for the 

commander is defined as 
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We propose a set of fusion rules to formulate the 

combined prediction from multi-source data expressed in 

degrees of reliability for the type of a target that has the 

mathematical properties of probabilities. Given 

confidence values of kt
i  and kt

j  for k=1, 2, the 

aggregation operators, },,{ 1 n  , in this paper, 

are as follows: 
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The combined prediction representing the overall 

degrees of belief on the type of a specific target can be 

obtained by applying aggregation operators to multi-

source data. The goal of fusion processing is to combine 

the estimations from distributed military robots when 

each of them estimates the probability of reliability on the 

type of a target, and another goal is to produce a single 

probability distribution that summarizes their 

probabilities. 

Among the aggregation operators, the mean operator 

simply extends a statistic summary and provides an 

average of kt
i ’s coming from different robots. The 

product rule summarizes the probabilities that coincide 

with kt
i  and kt

j . In this case, neither of kt
i  and kt

j  

should be zero, since the product operator suffers from 

the limitation that if one operand is zero, the entire 

product will be zero. To avoid the zero results of 

combined prediction using the product operator, in 

general, they assume that these zero’s could be replaced 

with very small positive number being close to zero [7]. 

Dempster’s rule for combining degrees of belief produces 

a new belief distribution that represents the consensus of 

the original opinions [4]. Using Dempster’s rule, the 

resulting values of kt ’s indicate the degrees of 

agreement on different robots’ probabilities of reliability 

on the type of a target; however, they completely exclude 

the degrees of disagreement or conflict. The advantage of 

using the Dempster’s rule in our fusion processing is that 

no priors and conditionals are needed. 

The normalization of combined prediction is given as 
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taking into account all of the estimations about types of a 

target. The normalized prediction, thus, represents the 

overall confidence on a set of uncertain estimations, and 

it translates the combined prediction into a specific value 

where 1ˆ 
k

k

t

t
 . 

B. Example of Combined Prediction 

Let  kt
i  = {0.60, 0.10, 0.20, 0.10} and  kt

j  = {0.70, 

0.20, 0.05, 0.05} from a robot i and a robot j for k=1, 2, 3, 

4.  This is interpreted that there are two surveillance 

robots, i and j, monitoring a specific target, which is 

uncertain of its type that is one of four types. Given 

confidence values, aggregation rules can be applied to get 

combined prediction, as defined in (1). The outputs of 

combined prediction are summarized in Table 1.  

For example, when we use 3 as an aggregation 

operator, the combined prediction of 1t  according to 

Dempster-Shafer theory is calculated as follows: 

.778.0
]1.07.02.07.01.07.005.06.005.06.02.06.0[1

7.06.0
1 






t


 

TABLE I.  THE EXAMPLE OF COMBINED PREDICTION USING THREE 

FUSION RULES 

kt
i = {0.60, 0.10, 0.20, 0.10} 

kt
j = {0.70, 0.20, 0.05, 0.05} 

Fusion rules kt
 

Mean (1) {0.650, 0.150, 0.125, 0.075} 

Product (2) {0.420, 0.020, 0.010, 0.005} 

Dempster-Shafer (3) {0.778, 0.027, 0.013, 0.006} 

Fusion rules kt̂
 

Mean (1) {0.650, 0.150, 0.125, 0.075} 

Product (2) {0.923, 0.044, 0.022, 0.011} 

Dempster-Shafer (3) {0.944, 0.033, 0.016, 0.007} 

 

When mean aggregator is used, among the fusion 

operators, the resulting distribution of combined 

prediction similarly reflects the distribution of confidence 

values from each robot’s perspective. In cases of product 

and Dempster-Shafer theory, however, the 1t ’s (0.420 

and 0.778) of the combined prediction are much bigger 

than the other combined values (0.020 and 0.027, 0.010 

and 0.013, 0.005 and 0.006), compared with the original 

distributions of their estimations. Normalizing the 

combined prediction kt̂ , as defined in (2), makes the 

confidence values on types of a target being compared 

with each other in the range of 0 and 1. 

III. EXPERIMENTATION 

We have implemented an individual fusion process 

using the aggregation operators of Mean, Product, and 

Dempster-Shafer theory in C# programming language, as 

depicted in Fig. 1. Military robots can be selected for up 

to six, i.e., from Robot1 to Robot6, and the possible types 

of a specific target monitored by them are assumed to be 

an SUV, Truck, APC, and Tank. Given input values of 

confidence for each type of a target, the combined 

prediction button calculates the fusion of confidence 

values according to (1) using three fusion operators. The 

normalization button returns a normalized output value, 

which is computed by (2). The plot button displays a 

graph whose bar is representing accumulated confidence 

values on each type of target, as shown in the right side of 

Fig. 1. The reset button initializes the fusion processing. 

 

Figure 1.  Fusion processing 
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To evaluate our fusion process in simulated, uncertain 

military environments, we have also implemented a 

simulator, as depicted in Fig. 2.  

The goal of our experiment using the simulator is to 

investigate the distribution of confidence values, as the 

result of applying three fusion operators to surveillance 

data perceived by IR sensors of different robots. In the 

experiment, we assume that two military robots 

simultaneously monitor a specific target at a randomly 

generated distance. In this case, we categorize the 

distance between a battlefield robot and a target into three 

ranges: short range, middle range, and long range. Short 

range targets and long range targets each make up 30% of 

the total, and 40% of the total is comprised of middle 

range targets. 

Fig. 2 is divided into two parts, one of which is the 

situation panel, as described in the left side of Fig. 2, and 

the other, the graph panel, as depicted in the right side of 

Fig. 2. The situation panel consists of a distance from 

robot1, a distance from robot2, robot1’s confidence value 

on a specific target given a distance, robot2’s confidence 

value on the same target given another distance, and 

lastly the results of fusion processing according to three 

aggregation operators. When the combined prediction 

button is pressed, the information above and the results of 

fusion processing are automatically generated over 100 

situations. On the graph panel, when targets are generated 

at a short range or middle range from the robots, the 

resulting confidence values produced by the product 

operator and the Dempster-Shafer theory operator have 

overall larger values than those values produced by the 

mean operator. 

IV. CONCLUSION 

We propose a set of fusion operators to combine multi-

sensor data from military robots and have implemented a 

simulator to repeatedly assess fusion processing in 

distributed battlefield environments. As part of ongoing 

work, we are developing an integrated battlefield 

simulator that has targets moving on pre-planned paths. 

Military surveillance robots search for possible threats 

among these targets. Other than the paths that the targets 

follow, the position and number of obstacles can also be 

programmed in advance and thus test whether the robots 

can track threats and communicate the results of fusion 

processing even when they momentarily do not have a 

visual on these targets. We hope to develop our simulator 

that can successfully create simulated, uncertain 

battlefield environments in which military robots can be 

repeatedly tested for their coordinated decision-making, 

target allocation, and the continuous tracking of the 

subsequent movements of targets. 

 

Figure 2.  Experiment for fusion processing 
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