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Abstract—Parallel robots exhibit good performance in terms 

of rigidity, accuracy, and dynamic characteristics. However, 

parallel robots have complex configurations and their 

dynamic model is highly nonlinear, and conventional PID 

controllers are not sufficiently robust for their motion 

control. In this paper, we have investigated the intelligent 

control of a hydraulically driven parallel robot based on the 

dynamic model and two control schemes have been 

developed: 1) Fuzzy-PID self tuning controller composed of 

the conventional PID control and with Fuzzy logic; 2) 

Adaptive neuro-fuzzy inference system-PID (ANFIS-PID) 

self tuning of the gains of the PID controller. The two 

controllers are used to track a straight line. The obtained 

results confirm the theoretical findings, i.e., the Fuzzy–PID 

and ANFIS-PID self tuning controller can reduce more 

tracking errors than the conventional PID controller. 

Amongst these methods, ANFIS has provided the best 

results for controlling robotic manipulators as compared to 

the conventional control strategies. Finally, simulated 

results that demonstrate the robot behaviors are presented. 

 

 

Index Terms—flexible parallel robot, PID control, fuzzy 

control, ANFIS, hydraulic actuators 

 

I. INTRODUCTION 

The assembly and maintenance of International 

Thermonuclear Experimental Reactor (ITER) vacuum 

vessel (VV) is highly challenging since the tasks 

performed by the robot involve welding, material 

handling, and machine cutting from inside the VV. The 

robot has ten DOFs (Fig.1) and it consists of two 

relatively independent sub-structures: (i) the carriage, 

which provides four DOFs rotation, linear motion, tilt 

rotation, and tracking motion that enlarge the workspace 

to offer high mobility, and (ii) the 6- Universal–

Prismatic-Spherical (UPS) hexa-parallel mechanism 

driven by six hydraulic cylinders that contribute six 

DOFs to the end effector. Consequently, the robot is a 

hybrid redundant manipulator with four DOFs provided 

by serial kinematic axes. During the machining process, 

however, the carriage will be locked on the track rail, and 

the other 3 actuators in the serial mechanism will be fixed 

at a certain position; thus, only the parallel mechanism 

contributes the motion to the machine tool. Consequently, 
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this parallel robot is composed of six closed loop chains 

driving the end effector collectively in a parallel structure. 

The 10-DOF prototype is equipped with water hydraulic 

drives since large quantities of oil are not allowed in 

ITER. 

   
 

Figure 1.  ITER reactor and hybrid robot. 

Flexible robot manipulators exhibit many advantages 

over rigid robots: they require lighter material, consume 

less power. Despite these advantages, modeling and 

control of flexible manipulators is more difficult than 

controlling rigid manipulators [1]. Thus, in machining, to 

achieve greater end-effector trajectory tracking accuracy 

for surface quality, a complex and more perfect control of 

the actuators for the flexible link has to be deduced. To 

minimize the tracking errors, dynamic forces need to be 

compensated by the controller. 

However, the closed mechanical chains make the 

dynamics of the parallel manipulators highly complex 

and their dynamic models highly nonlinear even though 

some of the parameters, such as masses, can be 

determined; parameters such as centripetal and coriolis 

forces, variation in location of center of gravity, modeling 

errors and disturbances such as machining forces, cannot 

be determined exactly. As a result, many of the control 

methods are not sufficiently efficient. The difficulty in 

the control of parallel robot lies in the trajectory control 

for its 6 actuators simultaneously. This also means that 

there will be a limitation on the error permitted for each 

actuator [2]. 

Over the last few years, significant efforts have been 

made to control parallel robots by researchers across the 

world. Various approaches have been proposed; for 

example, Hopkins and Williams II [3] used the PID 

control method and Indrawanta and Santoso implemented 

sliding mode control method [2]. The fuzzy method was 
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also used to control parallel robots; for example, 

Yongsheng et al. [4] formulated the enhanced fuzzy 

sliding mode controller for a 3-DOF parallel manipulator. 

The method of neural networks was also attractive and 

used by researchers for control actuated parallel robots, 

e.g., Akbas [5], and Li et al. [6]. 

The PID controllers can be described by robust 

performances across a wide range of operating conditions 

and their functional simplicity. However, the high 

nonlinear nature of the parallel robot means that a PID 

controller can perform well only at a particular operating 

range. The PID controllers can be basically divided into 

two categories. Firstly, the PID parameters are fixed over 

the entire control process; however, it is difficult to 

obtain satisfactory performances when the control system 

is highly nonlinear and heavily coupled. Secondly, in 

self-tuning PID, the parameters can be manipulated 

online based on the parameters estimation [7]. In order to 

obtain global results, it is necessary to re-tune the PID 

controller when the operating range is changed, and 

different techniques from nonlinear control theory are 

required [8]. 

Robotic machines, unlike humans, lack the ability to 

solve problems using imprecise information where it 

requires restrictive assumptions for the plant model and 

for the control to be designed (e.g., linearity). To emulate 

this ability, fuzzy logic and fuzzy sets are introduced [8]. 

The fuzzy controller can be designed without knowing 

the mathematical model of the system, and instead 

mimics human operators’ thinking processes through 

linguistic rules. These rules reflect human knowledge 

about how to control the dynamic system. In addition, 

unlike PIDs, fuzzy controllers are nonlinear and adaptive 

in nature, thereby giving a robust performance under 

parameter variations and load disturbance effect [7].  

Although fuzzy logic systems, which can reason with 

imprecise information, are good at explaining their 

decisions, they cannot automatically acquire the rules 

used to make those decisions [9]. On the other hand, 

artificial networks are good at recognizing patterns and 

have ability to train the parameters of a control system, 

but they are not good at explaining how they reach their 

decisions. These limitations in both systems have 

stimulated the creation of intelligent hybrid systems (like 

neuro-fuzzy system) where the two techniques are 

combined in such a manner that the limitations of the 

individual techniques are overcome. The neuro-adaptive 

learning techniques provide a method for the fuzzy 

modeling procedure to acquire information about a data 

set. This technique gives the fuzzy logic capability to 

compute the membership function parameters that 

effectively allow the associated fuzzy inference system to 

track the given input and output data [9]. 

The ANFIS control algorithm is very attention due to 

its robustness for nonlinear systems. Adhyaru and Jimit 

[10], Bachir and Zoubir [11], and Ngo et al.[12] used the 

ANFIS to control serial robot by training the input/output 

PID control data. Under the conditions of uncertainly, a 

method to identify the model parameters of parallel 

manipulators is to use the ANFIS control algorithm. Such 

an algorithm can be performed in a real time control 

application [9]. 

This paper is mainly concerned with the applications 

of Fuzzy and ANFIS that are contained within the AI 

techniques to control a hydraulically driven parallel robot. 

In the second section, the dynamics of the parallel robot 

is analyzed considering that the rod and joints inside 

every rigid cylinder are flexible, while the cylinders and 

moving plate are rigid bodies. The floating frame of 

reference method is used to model flexible components 

using FEM and then used to assemble the dynamics of 

the parallel robot model through the application of 

Lagrange’s equation and Lagrange multiplier method. In 

the third section, a hydraulic control system is designed 

and a PID control law is used. In section four, the fuzzy-

PI self tuning of the gains (Kp and Kd) for each hydraulic 

cylinder controller is designed, and in section five, the 

ANFIS-PI self tuning also control is also designed for the 

same reason. Finally, using the real robot parameters, the 

simulation studies were conducted out to demonstrate the 

performance of the proposed controllers. 

II. DYNAMIC ANALYSIS OF PARALLEL ROBOT 

The floating frame of reference method (FFRF) can be 

applied to bodies that undergo large body translations and 

rotations as well as elastic deformations with respect to a 

frame of reference. The deformation of a flexible body 

(rod) with respect to its frame of reference can be 

formulated an Euler-Bernoulli beam and using a finite 

element method, where each rod is meshed into 6 

elements and 7 nodes. Fig. 2 explains the floating frame 

of reference (FFR) coordinate systems used for 

describing the changes in the position of a point Pi in a 

deformed body i [1], [13]. 
 

  

Figure 2.  The position of node Pi in floating frame coordinates and 

finite elements of ith flexible rod. 

The dynamic nonlinear differential algebraic equation 

DAE that describes the overall rigid body motions of the 

moving platform and 6 rigid cylinders as well as the 6 

flexible rods is [1], [13]: 
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where M is the mass-inertia matrix; Cq, the Jacobian 

matrix of the nonlinear constraint equations; q, the vector 

of n generalized coordinates of all bodies of the parallel 

robot; λ, the vector of Lagrange multipliers; Qe, the vector 

of generalized forces, and Qv the quadratic velocity 
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vector. And Qf =[0  0  Kiqf]
T the vector of elastic forces; K, 

the diagonal orthonormalized modal stiffness matrix and 
i

fq , the vector of elastic coordinates [13].  

III. DERIVATION OF HYDRAULIC FORCES 

The parallel robot is mainly driven by water hydraulic 

servo actuators for two reasons first: hydraulic systems 

can offer high power density, which permits lightweight 

constructions, and secondly, water hydraulics is clean and 

suitable for the environment inside the ITER vacuum 

vessel. However, the use of water hydraulic drive is a 

challenge because of the limit of the flow rate of the 

servo valve. The speed cannot be very high (over 3 

m/min), since, otherwise, the speed error will be greater 

than acceptable and the robot cannot follow the track 

accurately [1]. The water hydraulic system is composed 

of six cylinders for the parallel robot, and each one is 

controlled by a Moog Type-30 servo valve. The pressures 

and flow rates in the system can be derived as follows. 

 

Figure 3.  Hydraulic components of the parallel robot. 

Assume that P1, P2 are the pressures of the infill and 

return water cavity, respectively (Pa); A1, A2, the 

effective action areas of the infill and the return water, 

respectively (m2); and Q1, Q2, the flow of the infill and 

the return water, respectively, (m3/s) (Fig.3). Then: 

)A/A(P-P=A/F=P 12211L                           (2) 

1
2

21L Q=)n+1/(nQ+Q=Q                        (3) 

In this formula, n = A2/A1. The resultant force 

produced inside each cylinder (F) can be derived from the 

pressures acting on the piston as follows: 

F+xb+xm=pA=pA-pA L12211 
               

(4) 

where x is the displacement of a piston (rod); b, the 

coefficient of friction (impedance coefficient, N.s/m), m 

is the mass of a rod. After some simplifications and 

substitutions, the following can be achieved: 

LtcL21L PC+P
Be)n+1(2

Vt
-xA=Q         (5) 

here, Be is the water bulk modules; Cic is the internal 

leakage. Vt: is total volume, and Ctc=((1+n)/(1+n3))Cic. The 

application of the Laplace transformation to (4) and (5) 

leads to the transfer function of the actuating unit of the 

valve controlled cylinder [1]. 

As shown in Fig.4, the trajectory generator calculates 

the rod (leg) position that is formed as a 6×1 (xd) vector 

feeding the PID control input. The PID controller 

produces a 6×1 control vector, z, which should fed to the 

hydraulic servovalve to produce the leg force F applied to 

the prismatic joint actuators of the manipulator to 

produce 6×1 output vectors x, which include actual rod 

positions. These are fed back to the controller [1]. The 

errors between the predicted and presented rod positions 

are used to determine the required force of the six 

actuators as follows: 

)k(x)1k(x)1k(u d 
                              

(6) 

where xd is the desired local displacement of a rod. 

 

Figure 4.  Block diagram of the control system of the parallel robot. 

IV. FUZZY-PID SELF TUNING AND CONTROLLER AND 

ITS MEMBERSHIP FUNCTION 

The parallel robot is considered a six closed 

mechanical chains that make the dynamics of the parallel 

manipulators highly complex and their dynamic models 

highly nonlinear. Because of these conditions, a 

conventional PID controller cannot reach satisfactory 

results. According to Tian [7], a self-tuning parameter 

fuzzy PID controller provides a control of the system 

with excellent performance in reliability, stability, and 

accuracy. The basic approach is to try to detect inputs 

when the controller is not properly tuned and then seek to 

adjust the PID gains to improve the performance. The 

schematic structure of the self-tuning-parameter fuzzy 

PID controller is given in Fig. 5. 
 

  

Figure 5.  Self-tuning-parameter fuzzy PID controller structure. 

The fuzzy controller is composed of the following four 

elements:1- a fuzzification, 2- a rule-base or knowledge 

base (a set of If-Then rules), 3- an inference mechanism 

or decision making mechanism (also called a “fuzzy 

inference” module), and 4- a defuzzification. 

In Fig. 5, the input is the reference value of the rod 

position and the output is the actual rod position. Inputs 

for the fuzzy block are rod length error E and the time 

derivative of a rod length error, EC. The PID controller 

parameters Kp and Kd are self-tuned according to the 

following logic rules by a fuzzy inference. 
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After all the inputs and outputs are defined for the 

fuzzy controller, the fuzzy control system can be 

specified. The linguistic description is provided by a 

control “expert” on how to tune the PID parameters. 

Next, the linguistic quantification above specifies a set 

of rules (a rule-base) that capture the expert’s knowledge 

about how to control a rod position. The knowledge of 

the process, which is a fuzzy model, is always described 

using simple fuzzy linguistic rules instead of precise 

mathematical functions. The general expression of a rule 

for this control system is as follows:  

Ri: IF E is NEm and EC is NECn, THEN λKp is NK1, 

λKd is NK2,  

where λKp and λKd denote output of the FLC, denote the 

adjustment coefficients of the PID parameters, NEm Є 

NE, NECn Є NEC, NK1, NK2 Є NK. 

 

Figure 6.  Membership functions of inputs 

Fig. 6 shows two inputs: the rod position error E and 

the derivation of the error EC. Both E and EC are divided 

into seven values as {NB, NM, NS, ZO, PS, PM, PB}, 

where NB: Negative Big, NM: Negative Medium, NS: 

Negative Small, ZO: Zero, PS: Positive Small, PM: 

Positive Medium, PB: Positive Big. 

The horizontal axis in Fig. 6 illustrates the scaling gain 

for a rod position error E and its time differential EC. 

Triangle membership functions were chosen as they are 

the most common and easy to implement in an embedded 

controller. Each of the triangles represents an area of the 

effect of rules. Similar interpretations of linguistic values 

were made in the definition of the membership functions 

on the outputs. 

TABLE I.  THE RULE BASE FOR THE TUNING OF THE CONTROL 

SYSTEM. 
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By combining the fuzzy sets of inputs for the rod 

position error (7) and the differential of the rod position 

error (7), there are totally 7×7 = 49 rules for tuning one 

controller output. Because we have two outputs (Kp and 

Kd), there are 49 × 2 = 98 rules for each servo controller. 

The rule base for the tuning of the control system is 

shown in Table 1. 

Table 1 illustrates what rule is effective when a 

specific combination of the rod position error E and its 

time differential EC is presented. For instance, the rod 

position error E is “located” in the NS triangle, and the 

differential of error EC in the ZO triangle. The 

combination of this information tells us that the output for 

Kp follows the NS triangle rule, and Kd  follows the PS 

triangle rule. 

The inference process or decision generally involves 

two steps: 1) The premises of all the rules are compared 

with the controller inputs to determine that rules apply to 

the current situation, 2) The conclusions (what control 

actions to take) are determined using the rules that have 

been determined to apply at the current time. The 

conclusions are characterized with a fuzzy set that 

represents the certainty that the input to the plant should 

take for various values [14]. 

The “AND” operator is applied, and then the 

membership degree of the output in a rule can be 

calculated as: 

μ(z) = min {μ(x); μ(y)}                                 (7) 

Based on the input information (E, EC), the triangle 

membership function is chosen. The result μ(z) should 

undergo a defuzzification process. Defuzzification refers 

to the way a crisp value is extracted from a fuzzy set as 

representative value, by combining the results of the 

inference process and then computing the "fuzzy 

centroid" of the area (of the chopped off triangles). The 

result is the λ(E;EC) weight coefficient (crisp value) 

which depends on E and EC and is used for calculating 

Kp and Kd, which can be summarized as follows [15]: 





N

1i
i

N

1i
ii

COG )z(/z).z(                       (8) 

Now, the tuned parameters of the PID controller can be 

found as follows [7]: 

)KK)(EC,E(KK Min,pMax,pLL
P

KMin,pp 
            

(9) 

)KK)(EC,E(KK Min,dMax,dLLKMin,dd d
         (10) 

where λ is a weight coefficient, and Kp,max, Kp,min Kd,max, 

and Kd,min are the maximum and minimum limits for the 

proportional gain and the integral gain, respectively. 

These limits were chosen from several tests for the 

conventional PID controller. Fig. 7 shows outputs λKp and 

λKd . 

 

Figure 7.  Membership functions of outputs. 

V. ANFIS CONTROLLER FOR TUNING PID GAINS 
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The ANFIS discriminates itself from normal fuzzy 

logic systems by the adaptive parameters, i.e., both the 

premise and consequent parameters are adjustable. The 

most noteworthy feature of the ANFIS is its hybrid 

learning algorithm. The adaptation process of the 

parameters of the ANFIS is divided into two steps [11]. 

For the first step of the consequent parameters training, 

the Least Squares (LS) method is used because the output 

of the ANFIS is a linear combination of the consequent 

parameters. The premise parameters are fixed at this step. 

After the consequent parameters have been adjusted, the 

approximation error is backpropogated through every 

layer to update the premise parameters as the second step. 

This part of the adaptation procedure is based on the 

gradient descent principle, which is the same as in the 

training of the BP neural network. The consequence 

parameters identified by the LS method are optimal in the 

sense of least squares under the condition that the premise 

parameters are fixed [11].The training process stops 

whenever the designated epoch number is reached or the 

training error goal is achieved. A combination of such 

intelligent systems, like ANFIS provides even better 

results than just neural networks or fuzzy control [10]. 

 

 

Figure 8.  A typical architecture ANFIS structure. 

To improve the reliability of the controller by the error 

minimization approach, and to overcome the awkward 

task of choosing membership functions of fuzzy 

controller, ANFIS are used in a parallel structure and 

embedded to the control system. In this implementation, 

error vector is computed for each ANFIS by using the 

difference between the actual rod positions generated by 

manipulator’s dynamic model and the desired rod 

positions. After the off-line training, the output values of 

the gains Kp and Kd generated by twelve ANFIS are 

applied to the PID controller of each cylinder. The results 

are evaluated to select the network generating the best 

result. It is then assigned as the ANFIS controller for 

actual time steps. The architecture of the used ANFIS is 

shown in Fig. 9. 

A typical architecture of used ANFIS is shown in Fig.8; 

here in which a circle indicates a fixed node, whereas a 

square indicates an adaptive node. For simplicity, we 

consider two inputs x, y and one output f. Among the 

many FIS models, the Sugeno fuzzy model is the most 

widely applied one for its high interpretability and 

computational efficiency, and built-in optimal and 

adaptive techniques. For each model, a common rule set 

with two fuzzy if-then rules can be expressed as [15]: 

Rule i: if x(=e) is Ai and y(= e ) is Bi, then fi=pix + qiy + 

ri  

where Ai and  Bi  are fuzzy sets in the antecedent and 

z=f(e, e ) is a crisp function in the consequent. 

The ANFIS controller generates continuous changes in 

the reference PID parameters Kp and Kd, based on the ith 

rod position error e and derivate of the error e , error 

defined as: e=x-xd , where xd and x are the reference and 

the actual displacement of the ith rod of parallel robot, 

respectively. In this study, each ANFIS consists of five 

layers as follows [15]: 
 

 
 

Figure 9.  ANFIS structure for each cylinder controller. 

Layer 1: In this layer, every node is adaptive and the 

output of each node i is the degree of membership of the 

input to the fuzzy membership function (MF) represented 

by the node, i=1,…,5. In this paper, the node function is a 

generalized bell membership function: 

10,6=i,)e(μ=O

5,1=i,)e(μ=O
a

cx
+1

1
=)x=e(μ=O

5Bi
1
i

Ai
1
i

ib2

i

i

Ai
1
i



            (11) 

1
iO is the output of the ith node, Ai and Bi  are the fuzzy 

sets in parameters form; x is the input to the node i. {ai , 

bi , ci}  are premise parameters. 

 

Layer 2: The total number of rules is 25 in this layer. 

Each node output represents the activation level of a rule: 

2 ( ) ( ), 1....,5i i Ai BiO w e e i                  (12) 

Layer 3: Fixed node i in this layer calculates the ratio 

of the ith rules activation level (firing strengths) to the 

total of all activation level; this layer is called normalized 

firing strengths: 






n

1i

iii
3
i

wwwO                            (13) 

Layer 4: Adaptive node i in this layer calculates the 

contribution of the ith rule towards the overall output, 

with the following node function: 

)reqep(w)ryqxp(wfwO iiiiiiiiii
4
i

   (14) 

where iw  is the output of layer 3, and {pi , qi , ri} are the 

consequent parameters. 
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Layer 5: The single node in this layer computes the 

overall output as the summation of all incoming signals, 

which is expressed as: 





n

1i
i

n

1i
ii

n

1i
ii

5
i wf.wfwO                           (15) 

The learning rule is the backpropogation gradient 

descendent, which calculates the error signals recursively 

from the output layer backward to the input nodes. The 

task of the learning algorithm for this architecture is to 

tune all the modifiable parameters to make the ANFIS 

output match the training data. The overall output is a 

linear combination of the modifiable parameters. 

The training algorithm requires a training set defined 

between inputs and outputs [14]. The input and output 

pattern set have 50000 rows. Figure 10, a, b, c, d show 

optimized membership function for e and e after 

training for each cylinder controller. Figure 9 shows the 

ANFIS model structure. The number of epochs was 100 

for training. The number of MFs for the input variable e 

and e is 5, respectively. The number of rules is then 

25(5 × 5=25). The generalized bell (Cauchy) MF is used 

for each input variables. It is clear from (11) that the bell 

MF is specified by three parameters. Therefore, the 

ANFIS used here contains a total of 105 fitting 

parameters, of which 30 (5×3 + 5×3=30) are the premise 

parameters and 75(3×25=75) are the consequent 

parameters for each cylinder controller. 

VI. PARALLEL ROBOT PARAMETERS, SIMULATION 

RESULTS AND DISCUSSION 

The actual values of the system parameters of the 

parallel robot of each element are tabulated in Table 2. 

The local position of the universal joint in the base plate 

and the local position of the spherical joint in the moving 

plate are given below. The tip point of each rod is 

initially located at 0.35m from the cylinder outlet. 

Young’s modulus is 2.07e11 N/m2. 
Base points (local):  [0.1658 cos(120(1-i)+(90±14.851)) 

0.1658 sin(120(1-i)+(90±14.851))   0]      i =1,2,3. 

End-effector points (local): [0.1296 cos(120(1-i)+(90 

±45.485))    0.1296sin(120(1-i)+(90±45.485))   0]    i =1,2,3. 

TABLE II.  MASS AND INERTIA PROPERTIES OF PARALLEL ROBOT’ 

ELEMENTS. 

Element 
Mass 

(kg) 

Izz = Iyy 

(Kg m2) 

Ixx 

(Kg m2) 

Ixy 

(Kg m2) 

cylinder 4.589 0.2159864 2.89683e-3 0 

rod piston 3.683 0.1371788 4.14392e-4 0 

moving plate 28.92 0.1867 0.3622 0 

 

The moving plate (end effector) is simulated to track a 

trajectory of: x= 0; y= -0.1t cos(42.87); z= +0.1t 

sin(42.87), with machining forces: Fx= 1000sin(2πft) N, 

Fy= 700sin(2πft) N, and Fz= -600sin(2πft) N, f=20 Hz. 

The equation of motion was solved using the Runge-

Kutta method with the initial values of generalized elastic 

deformation i

fq  = 03x1, velocity i
fq = 03x1, and first three 

non-rigid body modes, and each rod is assumed a simply 

supported beam. 

Three different controllers are implemented for 

computer simulation; the first one is the PID control. The 

second is the Fuzzy logic for tuning the gains of the PID 

controller (to find the optimal values) based on the 

expert’s experience, where Kd,max=diag (3000, 3000, 

3000, 3000, 3000, 3000), Kd,min=diag (1000, 1000, 1000, 

1000, 1000, 1000), Kp,max=diag (2.5, 2.5, 2.5, 2.5, 2.5, 

2.5), and Kp,min=diag (0.5, 0.5, 0.5, 0.5, 0.5, 0.5). In the 

Third, the parallel–implemented ANFIS technique is used 

for tuning the PID gains using the input output data from 

the fuzzy-PID as training data for each actuator for 

tracking the trajectory. During the simulations, the 

sampling period is chosen as 0.0005 s. Consequently, 

50000 steps are included in every control simulation. 
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a- Initial MFs for each cylinder.     b-  Final MFs of cylinder-c. 
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c-  Final MFs of cylinder-e.              d-  Final MFs of cylinder-f. 

Figure 10.  Initial and final (after training) membership functions MFs 

for input error. 
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c-  Kp of cylinder-e.                  d-  Kp of cylinder-f. 

Figure 11.  Comparison between Kp gain for PID controller by fuzzy 

and ANFIS tuning methods. 

Fig. 10 represents the initial and final (after training) 

membership functions for the error E for cylinders c, e, 

and f by the ANFIS method. From Figs 11, and 12, the 

PID gains (Kp and Kd) in both the cases of ANFIS and 
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Fuzzy tuning are not constant during the simulation, as in 

the case of only PID controller. The difference in the 

pressures between  the two champers of each cylinder, 

which can be seen in Fig.13, are drawn to compare 

between PID controller method and the ANFIS PID 

tuning method, which indicates actual values for pressure 

differences for optimal trajectory tracking, where the 

effective piston area is 0.0015 m2. Comparing Fig.14 with 

Fig.15, it can be observed that the end effector tracks the 

desired trajectory better with the ANFIS PID controller, 

since the control parameters Kp and  Kd can be adjusted 

through the ANFIS network’s learning. All the results 

demonstrate that the ANFIS PID control is better than 

Fuzzy PID and more effective than conventional PID 

controller. 
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Figure 12.  Comparison between the difference in the pressures resulted 

by conventional PID controller and ANFIS tuning method. 
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Figure 13.  Comparison between the difference in the pressures resulted 

by conventional PID controller and ANFIS tuning method. 
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Figure 14.  Y-displacement of moving plate  (end effector). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.727

0.7275

0.728

0.7285

0.729

0.7295

0.73

0.7305

time [sec]

Z
 d

is
p
la

c
e
m

e
n
t 

 [
m

]

Z displacement of center point of moving plate

 

 
PID

FUZZY

desired

ANFIS

 
 

Figure 15.  Z-displacement of moving plate(end effector). 

VII. CONCLUSION 

Parallel robots have higher rigidity and accuracy. In 

this paper, a 6-DOF hydraulically actuated parallel robot 

was investigated. Thus far, the PID controller has been 

used to operate under difficult conditions in this system, 

but since the gains of manual PID controller have to be 

tuned by trial and error procedures, obtaining optimal 

PID gains is very difficult without control design 

experience. 

In order to improve the trajectory tracking performance, 

the fuzzy control and an ANFIS algorithm were proposed 

to adjust the parameters of the PID control. To evaluate 

the performance of the proposed control algorithms, they 
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were compared with the simple PID control. The two 

controllers were respectively used to control the end 

effector along a desired path. Simulation results have 

shown that the two methods for tuning the PID controller 

have better performance than the PID controller in terms 

of the reduction in position tracking errors of the end 

effector. Amongst the control schemes developed, ANFIS 

tuning has provided the best results for control of parallel 

robotic manipulators as compared to the conventional 

control strategies. The neuro-adaptive learning techniques 

provide a method for fuzzy modeling procedures to learn 

information about data sets. This technique makes the 

fuzzy logic capable of computing the membership 

function parameters that best allow the associated fuzzy 

inference system to track the given input and output data. 

ANFIS provides evident reductions in settling time, 

steady state errors. In conclusion, the ANFIS for tuning 

PID control represents a practical and valid alternative to 

parallel robots (control). This has been proved using 

MATLAB simulation of a parallel robotic manipulator. 

Tuning method used in this system by ANFIS method 

has a good response without prior knowledge of the 

process. Also, by this method, more good responses than 

by the Fuzzy PID or only PID controllers are obtained. 

This control method is very useful to apply the process 

control system and helpful to select the most appropriate 

range for servovalves operation. 
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