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Abstract—This paper proposes a method to predict 

maximum traction force for autonomous mobile robots on 

rough terrain in order to improve maneuverability. For 

predicting traction force, we utilize friction-slip curves based 

on modified Brixius model derived empirically in 

terramechanics, which is a function of mobility number Bn′ 

and slip ratio S. Friction-slip curves include physical 

characteristics of various rough terrains such as firm soil, 

sandy soil and grass-covered soil. Also, we build prediction 

models for terrain parameters; maximum static friction and 

optimal slip ratio on friction-slip curves. Mobility number 

Bn′ is estimated from modified Willoughby Sinkage model 

which is a function of sinkage z and slip ratio S. Therefore, if 

sinkage z and slip ratio are measured once by sensors such as 

a laser sensor and a velocity sensor, then mobility number 

Bn′ is estimated and maximum traction force is predicted 

from a prediction model for terrain parameters. Estimation 

results for terrain parameters are shown in a driving 

simulation using MATLAB. Prediction performances for 

maximum traction of various terrains are evaluated as high 

accuracy through analysis of estimation errors.  

 
Index Terms—autonomous mobile Robot, brixius terrain 

Model, maneuverability, maximum traction, friction 

coefficient, rough terrain. 

 

I. INTRODUCTION 

It is important for autonomous mobile robots of 

missions such as exploration, reconnaissance, and disaster 

relief to predict maneuverability on rough terrain in 

aspects of driving efficient and driving safety. 

Maneuverability of a mobile robot depends upon a variety 

of interaction between a robot wheel and terrain. In 

particular, among them, friction-slip characteristic of a 

terrain is one of crucial elements in improving 

maneuverability of a mobile robot. Accordingly, to ensure 

maximized mobility on rough terrain, it is necessary to 

maintain maximum traction force determined from 

friction-slip characteristic [1-3]. 
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Worldwide, a lot of studies for terrain modeling based 

on friction-slip characteristic on rough terrain have been 

performed in order to improve energy efficiency for 

driving and to maximize mobility of a robot. There are 

three main methods for terrain modeling: analytical 

method, empirical method, and semi-empirical method.  

Analytical method is an approach to model a terrain by 

mathematically analysis of the interaction between a 

wheel and terrain. Analytical method facilitates to model 

accurate terrain based on capability of a computer to 

numerically analyze minute elements in soil. There are 

FDM (Finite Difference Method) [4], FEM (Finite 

Element Method) [5], and DEM (Discrete Element 

Method) [6] belong to analytical method. Empirical 

method is an approach to model a terrain based on cone 

index (CI) which is acquired by penetrating a cone 

penetration tester into a terrain [7]-[10]. Empirical method 

facilitates to model a variety of terrains through 

experiments after driving along various rough terrains. 

Lastly, semi-empirical method is an approach to model a 

terrain using experimental data along with mathematical 

analysis of the interaction mechanism between a wheel 

and surface of a terrain [1]-[3], [9]. Although empirical 

method is very simple, it can be applied for modeling of a 

variety of terrains. Also, recently, predictions obtained by 

Brixius model which is one of empirical methods were 

shown to accord with experimental results and DEM 

simulations [6]. Therefore, Brixius model which is widely 

known as one of empirical methods is adopted to derive 

friction-slip curve for predicting maximum traction force 

in this paper. 

Maximum coefficient of static friction µp is a parameter 

which means maximal reaction force generated from interaction 

between a wheel and surface of a terrain. Accordingly, it is a 

vital process to estimate maximum coefficient of static friction 

µp in predicting maximum mobility of a mobile robot on a terrain. 

In this paper, firstly, terrain prediction model with respect 

to mobility number Bn
′ is built to estimate maximum 

coefficient of static friction µp and optimal slip ratio Sp based on 

friction-slip characteristic on rough terrain. Then a method 

for obtaining efficient maneuverability is proposed by 

deriving maximum traction force on given terrains 

through terrain parameters estimated by the proposed 

modeling methods. Fig. 1 shows flow chart of the 

proposed algorithm estimating maximum traction force. 
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Figure 1. Flow chart of an estimation algorithm for maximum traction 

force 

II. BRIXIUS TERRAIN MODEL 

Brixius empirical model is expressed in wheel slips 

ratio S and mobility number Bn
′, Eq. (1) relative to wheel 

slip and Eq. (2) with respect to cone index CI determined by 

penetrating a cone into a ground, respectively. In this paper, 

existing cone index CI is changed into rating cone index RCI in 

Eq. (2). It is possible to express cone index CI as rating cone 

index RCI because rating cone index RCI is cone index CI 

multiplied by remolding index RI (RCI= CI   RI)[11].   
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Figure 2. Longitudinal interaction force between a wheel and terrain 

As shown in Fig. 2, longitudinal force between a wheel and 

surface of a terrain is expressed in traction force and resistance 

force.  Brixius terrain model is derived with respect to mobility 

number Bn
′ and slip ratio S, defined as:  (+: S > 0, –: S < 0)  
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It is convenient to consider the non-dimensional coefficient 

of the net traction force as shown in Eq. (5). 
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where 61 ~ CC  are parameters which are different 

depending on types of tires on experiment. In this paper, 

these parameters are derived on the assumption that a 

mobile robot equips bias-ply tires. Thus, terrain model 

parameters are used as 1C =0.88, 2C =0.1, 3C =7.5, 

4C =0.04, 5C =1, 6C =0.5 [7]. 

These coefficients can be viewed as slip dependent 

coefficients of friction. Fig. 3 shows plots of friction coefficient 

for Bn
′ = 50, corresponding to a firm soil, and Bn

′ = 15, 

corresponding to sandy soil. As shown in Fig. 3, Brixius terrain 

model can consider a wide variety of rough terrains  
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Figure 3. Brixius terrain model (S > 0) 

III. ESTIMATION FOR TERRAIN PARAMETER  

A. Prediction Model for Terrain Parameters 

It is needed to estimate terrain parameters µp, Sp from 

friction-slip characteristic in Fig. 3 for predicting maximum 

traction force of a mobile robot. A terrain parameter µp is 

maximum coefficient of static friction and Sp is optimal slip 

ratio when µp is generated. From terrain models in figure 3, 

Bn
′ - µp, Bn

′ - Sp curves are drawn as shown in figure 4. And using 

the non-linear regression method, prediction models for terrain 

parameters are derived mathematically as follows Eq. (6) and 

(7). 
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Figure 4. Prediction models for terrain parameters 

B. Estimation for Rating Cone Index (RCI) 

It is needed to estimate terrain parameters µp, Sp for 

predicting maximum traction force of a mobile robot on rough 

terrain. As mentioned in chap. ΙΙΙ-A, terrain parameters µp, 

Sp are estimated from prediction models Eq. 6-7 for terrain 

parameters relative to mobility number Bn
′. Therefore, first of all, 

it is vital to estimate mobility number Bn
′  for terrain parameters. 

In Eq. 2, since mobility number Bn
'  is a function of rating cone 

index RCI, Terrain parameters can be obtained by estimating 

rating cone index RCI. In this paper, Willoughby sinkage model 

is used to estimate rating cone index RCI. 

Willoughby sinkage model in Eq. 8 is an empirical equation 

to estimate sinkage of a wheel on fine-grained soils such as silts 

and clays [11-12]. 
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In case that a vehicle passes by on a terrain one time 

(N=1), Eq. 8 can be changed as an expression in rating cone 

index RCI, defined as: 
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Accordingly, if it is able to estimate slip ratio S and 

sinkage z in Eq. 9, then terrain parameters µp, Sp from Eq. 

6-7 of prediction models can be estimated through obtaining 

rating cone index RCI as well as mobility number Bn
′. 

IV. SIMULATION FOR ESTIMATING TERRAIN PARAMETERS 

A. Longitudinal Vehicle Dynamics 

In order to verify the proposed method for predicting 

maximum traction force in this paper, estimation 

simulations for terrain parameters are performed 

considering longitudinal vehicle dynamics of a mobile 

robot. Figure 5 describes longitudinal vehicle dynamics 

model.  

 

xrxf FF , : Traction force of front and rear wheel  

zrzf FF , : Vertical force of front and rear wheel 

hrf LLL ,, : Distance from a middle point to front, rear wheel, and CG  

 : Surface inclination   dF : Resistance force   xV : Longitudinal 

velocity 

Figure 5. Longitudinal vehicle dynamics 

From vehicle dynamics model in figure 5, longitudinal 

motion equations of a vehicle are follows:  
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where dC is drag coefficient,  is density of air, and A is a 

contact area of air on the driving direction of a vehicle. 

Also, longitudinal motion equations of a wheel are as 

follows:  

    
WFx                              (15) 

 
rFTJ ixii                        (16) 

where  is friction coefficient, W is a weight of a vehicle, 

J is inertial moment, T is wheel torque, r is radius of a 

wheel, and i is the number of wheels. 

B. Simulation to Estimate Terrain Parameters 

Fig. 6 and Fig. 7 show a diagram of simulator to estimate 

terrain parameters using Simulink of MATLAB. Simulation 

results in estimated terrain parameters using state data such as 

velocity of vehicle body, angular velocity of a wheel, and wheel 

torque measured while a mobile robot is driving on rough terrain 

based on velocity control. Simulator is divided into three parts: 

longitudinal dynamics model, terrain model, and estimator for 

terrain parameters.  
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Figure 6. Simulator to estimate terrain parameters 

As mentioned, longitudinal dynamics model is used to 

control state of a mobile robot from longitudinal motion 

equations. In this paper, slip ratio S is estimated using state 

variables generated from simulation as measured variables of 

the robot. Also, as terrain models, ranges of sinkage z and rating 

cone index RCI are selected through reviewing experiment data 

in relevant papers considering three kinds of terrains: sandy soil, 

firm soil, and grass-covered soil as shown in figure 8. Table 1 

shows the ranges of sinkage z and rating cone index RCI on the 

assumption that sinkage z is able to be measured by a sensor 

such as a laser sensor and a robot is moving on a specified terrain 

designated by rating cone index RCI, respectively. Lastly, 

estimator for terrain parameters uses state data of a mobile robot 

from longitudinal motion equations as inputs, and thereby terrain 

parameters are estimated using the Willoughby sinkage model 

and the prediction model mentioned in chap. ΙΙΙ.  

TABLE I. SINKAGE AND RATING CONE INDEX OF TERRAINS [7], [8], [9], 

[11], [12] 

Weight 1 ton Sandy soil Firm soil Grass-covered soil 

Sinkage z  [m] 0.01 ~ 0.05 0.001 ~ 0.01 0.001 > z  

Rating cone index 

RCI  [kPa] 
200 ~ 500 400 ~ 1200 1000~2000 

 

 

Figure 7. Flow chart of simulation to estimate terrain parameters 

      
(a) Sandy soil                                             (b) Firm soil 

 
(c) Grass-covered soil 

Figure  8. Terrains for simulation 

A. Simulation Results 

Sampling frequency is 100 Hz for acquiring state data 

of a mobile robot on simulation. In order that simulation 

results must be quite similar to real experimental results, 

simulations are performed based on the prerequisite that 

the most important variables such as slip ratio S and 

sinkage z are influenced by Gaussian noise from which 

sensors are very susceptible.  

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

The number of samples 

B
n

'

 

 

without filtering

with RLS filtering

 

0 100 200 300 400 500 600 700 800 900 1000
0.7

0.75

0.8

0.85

0.9

The number of samples 

M
u

p

 

0 100 200 300 400 500 600 700 800 900 1000
0.55

0.6

0.65

0.7

The number of samples 

S
p

 

Figure 9.  Estimation for terrain parameters on grass-covered soil. 
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Figure 10.  Estimation for terrain parameters on firm soil. 
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Figure 11. Estimation for terrain parameters on sandy soil. 

Fig. 9-Fig. 11 show the estimation results for terrain 

parameters Bn
′, µp, and Sp depending on a kind of terrains. 

In this paper, recursive least square (RLS) filter is used to 

remove noise effects for improving estimation accuracy 

for terrain parameters. As shown in figure 9-11, the 

estimation graphs for mobility number Bn
′ result in 

removing noise effects by using RLS filter. Forgetting 

factor of RLS filter applied to simulation is 0.93.  

Intuitionally, simulation results seem to be matched 

well to figure 3 in comparison with the graphs of terrain 

models in figure 3: sandy soil (Bn
′ = 10), firm soil (Bn

′ = 30), 

and grass-covered soil (Bn
′ = 100). Quantitatively, table 2 

shows estimation accuracy for terrain parameters. 

Accuracy rates are derived by comparison between 

estimation values on simulation and actual values on each 

terrain model. Entirely, estimation performances have 

high accuracy as estimation accuracy of µp is 94% and 

estimation accuracy of Sp is 95%. In table 2, estimation 

performance on sandy soil has the worst error rate of the 

cases. It is shown as modeling errors of prediction models 

generated when Bn
′ - µp and Bn

′ - Sp curve are modified to 

mathematical equations using the non-linear regression 

method in chap. ΙΙΙ-A. These modeling errors can be 

addressed by using more accurate mathematical model for 

remodeling.   

TABLE II. ESTIMATION ERROR OF TERRAIN PARAMETERS 

 Sandy soil Firm soil Grass-covered soil 

p  [%] 11.43 3.51 2.45  

pS  [%] 8.92 1.96 3.96 

B. Estimation for Maximum Traction 

Eq. 17 indicates the range of traction force which is 

allowable to robot wheels on rough terrain. In case of a 

four wheel drive robot, if front (
1TF ) and rear (

2TF ) 

driving motor ensure enough power for moving on rough 

terrain, then the allowable traction region of a robot is 

determined from Eq. 17 as shown in figure 12. 

)()( ppTpp SSWFSSW          (17) 

Fig. 13 shows distribution of maximum traction force as 

changing weight of a robot based on estimation results for 

terrain parameters on sandy soil. Consequently, a strategy 

for efficient maneuverability can be built in the 

permissible range of traction force and/or of the maximum 

traction force, depending on a specified purpose of a 

mobile robot. 

 

Figure 12. Allowable traction region of a mobile robot 

 

Figure 13. Distribution of maximum traction force as weight of a robot. 
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V. CONCLUSION 

In this paper, friction-slip curves were derived using 

Brixius empirical model for modeling rough terrains. And 

prediction models for terrain parameters were built from 

friction-slip curves of Brixius model using the non-linear 

regression method. Prediction models were able to 

estimate terrain parameters µp, Sp by estimated mobility 

number Bn
′ because prediction models are the function of 

mobility number Bn
′. Mobility number Bn

′ was estimated by 

acquiring rating cone index RCI using Willoughby 

sinkage model. Estimated data were improved through the 

process to remove noise effects and thereby performances 

for estimating terrain parameters had high accuracy. 
Consequently, a strategy for efficient maneuverability can 

be built in the permissible range of traction force and/or of 

the maximum traction force, depending on a specified 

purpose of a mobile robot. 
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